Smart GAN: a smart generative adversarial network for limited imbalanced dataset
Advancements in Machine Learning (ML) and Computer Vision have led to notable improvements in the detection of breast cancer. However, the accuracy of the classifier is limited due to imbalanced datasets that cause overfitting. Thus, additional images are needed to improve the classifier’s performan...
Gespeichert in:
Veröffentlicht in: | The Journal of supercomputing 2024-09, Vol.80 (14), p.20640-20681 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20681 |
---|---|
container_issue | 14 |
container_start_page | 20640 |
container_title | The Journal of supercomputing |
container_volume | 80 |
creator | Kumari, Deepa Vyshnavi, S. K. Dhar, Rupsa Rajita, B. S. A. S. Panda, Subhrakanta Christopher, Jabez |
description | Advancements in Machine Learning (ML) and Computer Vision have led to notable improvements in the detection of breast cancer. However, the accuracy of the classifier is limited due to imbalanced datasets that cause overfitting. Thus, additional images are needed to improve the classifier’s performance. Generative Adversarial Networks (GAN) are used for image augmentation. Still, its limitations, such as the random use of different types of GAN, can lead to a too-good discriminator, causing generator training to fail due to vanishing gradients. Therefore, selecting the appropriate GAN model for the given scenario is crucial for optimal performance. This paper proposes a novel Smart Generative Adversarial Network (Smart GAN) architecture to develop an efficient and computational classification model for a limited imbalanced dataset. Smart GAN uses a three-fold approach. Different types of GAN augment the dataset in the first phase of experimental work, and their evaluation metrics are calculated. In the second phase, the metric scores are used as rewards for the Reinforcement learning model (Q-learning approach). The best augmentation is chosen based on the best Q-values for each metric score. It compares three different Convolutional Neural Networks (CNN) and selects the best-suited network to classify the augmented datasets. The proposed Smart GAN architecture outperforms other existing approaches by giving a better accuracy of 89.62% and 89.91% on Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammography (DDSM) augmented datasets, respectively, representing an approximately 10% increment in detection rate compared to non-augmented datasets. |
doi_str_mv | 10.1007/s11227-024-06198-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3087556428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3087556428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-9ce4e08379f2b6c3b56943f7b83ff3451476451c14875d3fd4151731955cf4273</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTmNcm4K0WrUFRQ1yEzk5Sp05mapIr_3tgR3Lm5DzjfudyD0DmFSwqgriKljCkCTBAoaKkJP0ATKhUnILQ4RBMoGRAtBTtGJzGuAUBwxSfo6XljQ8KL2cM1tjjul5XrXbCp_XDYNh8uRBta2-Hepc8hvGE_BNy1mza5Brebyna2r_PY2GSjS6foyNsuurPfPkWvtzcv8zuyfFzcz2dLUjOARMraCQeaq9Kzqqh5JYtScK8qzb3nQlKhilxrKrSSDfeNoJIqTkspay-Y4lN0Mfpuw_C-czGZ9bALfT5pOGRGFoLprGKjqg5DjMF5sw1tfvLLUDA_yZkxOZOTM_vkDM8QH6GYxf3KhT_rf6hv00hvbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087556428</pqid></control><display><type>article</type><title>Smart GAN: a smart generative adversarial network for limited imbalanced dataset</title><source>SpringerLink Journals</source><creator>Kumari, Deepa ; Vyshnavi, S. K. ; Dhar, Rupsa ; Rajita, B. S. A. S. ; Panda, Subhrakanta ; Christopher, Jabez</creator><creatorcontrib>Kumari, Deepa ; Vyshnavi, S. K. ; Dhar, Rupsa ; Rajita, B. S. A. S. ; Panda, Subhrakanta ; Christopher, Jabez</creatorcontrib><description>Advancements in Machine Learning (ML) and Computer Vision have led to notable improvements in the detection of breast cancer. However, the accuracy of the classifier is limited due to imbalanced datasets that cause overfitting. Thus, additional images are needed to improve the classifier’s performance. Generative Adversarial Networks (GAN) are used for image augmentation. Still, its limitations, such as the random use of different types of GAN, can lead to a too-good discriminator, causing generator training to fail due to vanishing gradients. Therefore, selecting the appropriate GAN model for the given scenario is crucial for optimal performance. This paper proposes a novel Smart Generative Adversarial Network (Smart GAN) architecture to develop an efficient and computational classification model for a limited imbalanced dataset. Smart GAN uses a three-fold approach. Different types of GAN augment the dataset in the first phase of experimental work, and their evaluation metrics are calculated. In the second phase, the metric scores are used as rewards for the Reinforcement learning model (Q-learning approach). The best augmentation is chosen based on the best Q-values for each metric score. It compares three different Convolutional Neural Networks (CNN) and selects the best-suited network to classify the augmented datasets. The proposed Smart GAN architecture outperforms other existing approaches by giving a better accuracy of 89.62% and 89.91% on Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammography (DDSM) augmented datasets, respectively, representing an approximately 10% increment in detection rate compared to non-augmented datasets.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-024-06198-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Artificial neural networks ; Compilers ; Computer Science ; Computer vision ; Data augmentation ; Datasets ; Digital imaging ; Generative adversarial networks ; Image analysis ; Interpreters ; Machine learning ; Mammography ; Processor Architectures ; Programming Languages</subject><ispartof>The Journal of supercomputing, 2024-09, Vol.80 (14), p.20640-20681</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-9ce4e08379f2b6c3b56943f7b83ff3451476451c14875d3fd4151731955cf4273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-024-06198-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-024-06198-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kumari, Deepa</creatorcontrib><creatorcontrib>Vyshnavi, S. K.</creatorcontrib><creatorcontrib>Dhar, Rupsa</creatorcontrib><creatorcontrib>Rajita, B. S. A. S.</creatorcontrib><creatorcontrib>Panda, Subhrakanta</creatorcontrib><creatorcontrib>Christopher, Jabez</creatorcontrib><title>Smart GAN: a smart generative adversarial network for limited imbalanced dataset</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>Advancements in Machine Learning (ML) and Computer Vision have led to notable improvements in the detection of breast cancer. However, the accuracy of the classifier is limited due to imbalanced datasets that cause overfitting. Thus, additional images are needed to improve the classifier’s performance. Generative Adversarial Networks (GAN) are used for image augmentation. Still, its limitations, such as the random use of different types of GAN, can lead to a too-good discriminator, causing generator training to fail due to vanishing gradients. Therefore, selecting the appropriate GAN model for the given scenario is crucial for optimal performance. This paper proposes a novel Smart Generative Adversarial Network (Smart GAN) architecture to develop an efficient and computational classification model for a limited imbalanced dataset. Smart GAN uses a three-fold approach. Different types of GAN augment the dataset in the first phase of experimental work, and their evaluation metrics are calculated. In the second phase, the metric scores are used as rewards for the Reinforcement learning model (Q-learning approach). The best augmentation is chosen based on the best Q-values for each metric score. It compares three different Convolutional Neural Networks (CNN) and selects the best-suited network to classify the augmented datasets. The proposed Smart GAN architecture outperforms other existing approaches by giving a better accuracy of 89.62% and 89.91% on Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammography (DDSM) augmented datasets, respectively, representing an approximately 10% increment in detection rate compared to non-augmented datasets.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Data augmentation</subject><subject>Datasets</subject><subject>Digital imaging</subject><subject>Generative adversarial networks</subject><subject>Image analysis</subject><subject>Interpreters</subject><subject>Machine learning</subject><subject>Mammography</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTmNcm4K0WrUFRQ1yEzk5Sp05mapIr_3tgR3Lm5DzjfudyD0DmFSwqgriKljCkCTBAoaKkJP0ATKhUnILQ4RBMoGRAtBTtGJzGuAUBwxSfo6XljQ8KL2cM1tjjul5XrXbCp_XDYNh8uRBta2-Hepc8hvGE_BNy1mza5Brebyna2r_PY2GSjS6foyNsuurPfPkWvtzcv8zuyfFzcz2dLUjOARMraCQeaq9Kzqqh5JYtScK8qzb3nQlKhilxrKrSSDfeNoJIqTkspay-Y4lN0Mfpuw_C-czGZ9bALfT5pOGRGFoLprGKjqg5DjMF5sw1tfvLLUDA_yZkxOZOTM_vkDM8QH6GYxf3KhT_rf6hv00hvbQ</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Kumari, Deepa</creator><creator>Vyshnavi, S. K.</creator><creator>Dhar, Rupsa</creator><creator>Rajita, B. S. A. S.</creator><creator>Panda, Subhrakanta</creator><creator>Christopher, Jabez</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240901</creationdate><title>Smart GAN: a smart generative adversarial network for limited imbalanced dataset</title><author>Kumari, Deepa ; Vyshnavi, S. K. ; Dhar, Rupsa ; Rajita, B. S. A. S. ; Panda, Subhrakanta ; Christopher, Jabez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-9ce4e08379f2b6c3b56943f7b83ff3451476451c14875d3fd4151731955cf4273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Data augmentation</topic><topic>Datasets</topic><topic>Digital imaging</topic><topic>Generative adversarial networks</topic><topic>Image analysis</topic><topic>Interpreters</topic><topic>Machine learning</topic><topic>Mammography</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumari, Deepa</creatorcontrib><creatorcontrib>Vyshnavi, S. K.</creatorcontrib><creatorcontrib>Dhar, Rupsa</creatorcontrib><creatorcontrib>Rajita, B. S. A. S.</creatorcontrib><creatorcontrib>Panda, Subhrakanta</creatorcontrib><creatorcontrib>Christopher, Jabez</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumari, Deepa</au><au>Vyshnavi, S. K.</au><au>Dhar, Rupsa</au><au>Rajita, B. S. A. S.</au><au>Panda, Subhrakanta</au><au>Christopher, Jabez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smart GAN: a smart generative adversarial network for limited imbalanced dataset</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>80</volume><issue>14</issue><spage>20640</spage><epage>20681</epage><pages>20640-20681</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>Advancements in Machine Learning (ML) and Computer Vision have led to notable improvements in the detection of breast cancer. However, the accuracy of the classifier is limited due to imbalanced datasets that cause overfitting. Thus, additional images are needed to improve the classifier’s performance. Generative Adversarial Networks (GAN) are used for image augmentation. Still, its limitations, such as the random use of different types of GAN, can lead to a too-good discriminator, causing generator training to fail due to vanishing gradients. Therefore, selecting the appropriate GAN model for the given scenario is crucial for optimal performance. This paper proposes a novel Smart Generative Adversarial Network (Smart GAN) architecture to develop an efficient and computational classification model for a limited imbalanced dataset. Smart GAN uses a three-fold approach. Different types of GAN augment the dataset in the first phase of experimental work, and their evaluation metrics are calculated. In the second phase, the metric scores are used as rewards for the Reinforcement learning model (Q-learning approach). The best augmentation is chosen based on the best Q-values for each metric score. It compares three different Convolutional Neural Networks (CNN) and selects the best-suited network to classify the augmented datasets. The proposed Smart GAN architecture outperforms other existing approaches by giving a better accuracy of 89.62% and 89.91% on Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammography (DDSM) augmented datasets, respectively, representing an approximately 10% increment in detection rate compared to non-augmented datasets.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-024-06198-3</doi><tpages>42</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-8542 |
ispartof | The Journal of supercomputing, 2024-09, Vol.80 (14), p.20640-20681 |
issn | 0920-8542 1573-0484 |
language | eng |
recordid | cdi_proquest_journals_3087556428 |
source | SpringerLink Journals |
subjects | Accuracy Artificial neural networks Compilers Computer Science Computer vision Data augmentation Datasets Digital imaging Generative adversarial networks Image analysis Interpreters Machine learning Mammography Processor Architectures Programming Languages |
title | Smart GAN: a smart generative adversarial network for limited imbalanced dataset |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A21%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smart%20GAN:%20a%20smart%20generative%20adversarial%20network%20for%20limited%20imbalanced%20dataset&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Kumari,%20Deepa&rft.date=2024-09-01&rft.volume=80&rft.issue=14&rft.spage=20640&rft.epage=20681&rft.pages=20640-20681&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-024-06198-3&rft_dat=%3Cproquest_cross%3E3087556428%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3087556428&rft_id=info:pmid/&rfr_iscdi=true |