Smart GAN: a smart generative adversarial network for limited imbalanced dataset

Advancements in Machine Learning (ML) and Computer Vision have led to notable improvements in the detection of breast cancer. However, the accuracy of the classifier is limited due to imbalanced datasets that cause overfitting. Thus, additional images are needed to improve the classifier’s performan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2024-09, Vol.80 (14), p.20640-20681
Hauptverfasser: Kumari, Deepa, Vyshnavi, S. K., Dhar, Rupsa, Rajita, B. S. A. S., Panda, Subhrakanta, Christopher, Jabez
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Advancements in Machine Learning (ML) and Computer Vision have led to notable improvements in the detection of breast cancer. However, the accuracy of the classifier is limited due to imbalanced datasets that cause overfitting. Thus, additional images are needed to improve the classifier’s performance. Generative Adversarial Networks (GAN) are used for image augmentation. Still, its limitations, such as the random use of different types of GAN, can lead to a too-good discriminator, causing generator training to fail due to vanishing gradients. Therefore, selecting the appropriate GAN model for the given scenario is crucial for optimal performance. This paper proposes a novel Smart Generative Adversarial Network (Smart GAN) architecture to develop an efficient and computational classification model for a limited imbalanced dataset. Smart GAN uses a three-fold approach. Different types of GAN augment the dataset in the first phase of experimental work, and their evaluation metrics are calculated. In the second phase, the metric scores are used as rewards for the Reinforcement learning model (Q-learning approach). The best augmentation is chosen based on the best Q-values for each metric score. It compares three different Convolutional Neural Networks (CNN) and selects the best-suited network to classify the augmented datasets. The proposed Smart GAN architecture outperforms other existing approaches by giving a better accuracy of 89.62% and 89.91% on Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammography (DDSM) augmented datasets, respectively, representing an approximately 10% increment in detection rate compared to non-augmented datasets.
ISSN:0920-8542
1573-0484
DOI:10.1007/s11227-024-06198-3