A Cholesky-based sparse covariance estimation with an application to genes data

The modified Cholesky decomposition (MCD) is a powerful tool for estimating a covariance matrix. The regularization can be conveniently imposed on the linear regressions to encourage the sparsity in the estimated covariance matrix to accommodate the high-dimensional data. In this paper, we propose a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biopharmaceutical statistics 2021-09, Vol.31 (5), p.603-616
Hauptverfasser: Li, Chunshi, Yang, Mo, Wang, Mingqiu, Kang, Hong, Kang, Xiaoning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The modified Cholesky decomposition (MCD) is a powerful tool for estimating a covariance matrix. The regularization can be conveniently imposed on the linear regressions to encourage the sparsity in the estimated covariance matrix to accommodate the high-dimensional data. In this paper, we propose a Cholesky-based sparse ensemble estimate for covariance matrix by averaging a set of Cholesky factor estimates obtained from multiple variable orderings used in the MCD. The sparse estimation is enabled by encouraging the sparsity in the Cholesky factor. The theoretical consistent property is established under some regular conditions. The merits of the proposed method are illustrated through simulation and a maize genes data set.
ISSN:1054-3406
1520-5711
DOI:10.1080/10543406.2021.1931270