DIABLO: A 6-DoF Wheeled Bipedal Robot Composed Entirely of Direct-Drive Joints

Wheeled bipedal robots offer the advantages of both wheeled and legged robots, combining the ability to traverse a wide range of terrains and environments with high efficiency. However, the conventional approach in existing wheeled bipedal robots involves motor-driven joints with high-ratio gearboxe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-09
Hauptverfasser: Liu, Dingchuan, Yang, Fangfang, Liao, Xuanhong, Lyu, Ximin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wheeled bipedal robots offer the advantages of both wheeled and legged robots, combining the ability to traverse a wide range of terrains and environments with high efficiency. However, the conventional approach in existing wheeled bipedal robots involves motor-driven joints with high-ratio gearboxes. While this approach provides specific benefits, it also presents several challenges, including increased mechanical complexity, efficiency losses, noise, vibrations, and higher maintenance and lubrication requirements. Addressing the aforementioned concerns, we developed a direct-drive wheeled bipedal robot called DIABLO, which eliminates the use of gearboxes entirely. Our robotic system is simplified as a second-order inverted pendulum, and we have designed an LQR-based balance controller to ensure stability. Additionally, we implemented comprehensive motion controller, including yaw, split-angle, height, and roll controllers. Through expriments in simulations and real-world prototype, we have demonstrated that our platform achieves satisfactory performance.
ISSN:2331-8422