Commutative nilpotent transformation semigroups
Cameron et al. determined the maximum size of a null subsemigroup of the full transformation semigroup T ( X ) on a finite set X and provided a description of the null semigroups that achieve that size. In this paper we extend the results on null semigroups (which are commutative) to commutative nil...
Gespeichert in:
Veröffentlicht in: | Semigroup forum 2024-08, Vol.109 (1), p.60-75 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cameron et al. determined the maximum size of a null subsemigroup of the full transformation semigroup
T
(
X
)
on a finite set
X
and provided a description of the null semigroups that achieve that size. In this paper we extend the results on null semigroups (which are commutative) to commutative nilpotent semigroups. Using a mixture of algebraic and combinatorial techniques, we show that, when
X
is finite, the maximum order of a commutative nilpotent subsemigroup of
T
(
X
)
is equal to the maximum order of a null subsemigroup of
T
(
X
)
and we prove that the largest commutative nilpotent subsemigroups of
T
(
X
)
are the null semigroups previously characterized by Cameron et al. |
---|---|
ISSN: | 0037-1912 1432-2137 |
DOI: | 10.1007/s00233-024-10444-8 |