Design of a System for Analyzing Cell Mechanics
Accurately measuring cell stiffness is challenging due to the invasiveness of traditional methods like atomic force microscopy (AFM) and optical stretching. We introduce a non-invasive off-axis system using holographic imaging and acoustic stimulation. This system features an off-axis Mach-Zehnder i...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-07 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Accurately measuring cell stiffness is challenging due to the invasiveness of traditional methods like atomic force microscopy (AFM) and optical stretching. We introduce a non-invasive off-axis system using holographic imaging and acoustic stimulation. This system features an off-axis Mach-Zehnder interferometer and bulk acoustic waves to capture cell mechanics. It employs high-resolution components to create detailed interferograms and allows continuous imaging of cell deformation. Unlike conventional techniques, our method provides high-throughput, label-free measurements while preserving cell integrity. Polyacrylamide beads are tested for high precision, highlighting the potential of the system in early cancer detection, disease monitoring, and mechanobiological research. |
---|---|
ISSN: | 2331-8422 |