Two-stage assembly of patchy ellipses: From bent-core particlesto liquid crystal analogs

We investigate the two-dimensional behavior of colloidal patchy ellipsoids specifically designed to follow a two-step assembly process from the monomer state to mesoscopic liquid-crystal phases, via the formation of so-called bent-core units at the intermediate stage. Our model comprises a binary mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Singh, Anuj Kumar, Bupathy, Arunkumar, Jenis Thongam, Bianchi, Emanuela, Kahl, Gerhard, Banerjee, Varsha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the two-dimensional behavior of colloidal patchy ellipsoids specifically designed to follow a two-step assembly process from the monomer state to mesoscopic liquid-crystal phases, via the formation of so-called bent-core units at the intermediate stage. Our model comprises a binary mixture of ellipses interacting via the Gay-Berne potential and decorated by surface patches, with the binary components being mirror-image variants of each other - referred to as left-handed and right-handed ellipses according to the position of their patches. The surface patches are designed so as in the first stage of the assembly the monomers form bent-cores units, i.e. V-shaped dimers with a specific bent angle. The Gay-Berne interactions, which act between the ellipses, drive the dimers to subsequently form the characteristic phase observed in bent-core liquid crystals. We numerically investigate -- by means of both Molecular Dynamics and Monte Carlo simulations -- the described two-step process: we first optimize a target bent-core unit and we then fully characterize its state diagram in temperature and density, defining the regions where the different liquid crystalline phases dominate.
ISSN:2331-8422