SSPACE Astrobiology Payload-1 (SAP-1)

The SSPACE Astrobiology Payload (SAP) series, starting with the SAP-1 project is designed to conduct in-situ microbiology experiments in low earth orbit. This payload series aims to understand the behaviour of microbial organisms in space, particularly those critical for human health, and the corres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Lokaveer, A, Thomas, Anjana, Maliyekkal Yasir, Yogahariharan, S, Dewangan, Akash, Saurabh Kishor Mahajan, Sakshi, Aravind Tembhurne, Gupta, Gunja Subhash, Bhalla, Devashish, Anantha Datta Dhruva, Kumar, Aloke, Viswanathan, Koushik, Khaire, Vikram, Narayanan, Anand, Priyadarshnam Hari
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The SSPACE Astrobiology Payload (SAP) series, starting with the SAP-1 project is designed to conduct in-situ microbiology experiments in low earth orbit. This payload series aims to understand the behaviour of microbial organisms in space, particularly those critical for human health, and the corresponding effects due to microgravity and solar/galactic radiation. SAP-1 focuses on studying Bacillus clausii and Bacillus coagulans, bacteria beneficial to humans. It aims to provide a space laboratory for astrobiology experiments under microgravity conditions. The hardware developed for these experiments is indigenous and tailored to meet the unique requirements of autonomous microbiology experiments by controlling pressure, temperature, and nutrition flow to bacteria. A rotating platform, which forms the core design, is innovatively utilised to regulate the flow and mixing of nutrients with dormant bacteria. The technology demonstration models developed at SSPACE have yielded promising results, with ongoing efforts to refine, adapt for space conditions, and prepare for integration with nanosatellites or space modules. The anticipated payload will be compact, approximately 1U in size (10cm x 10cm x 10cm), consume less than 5W power, and offer flexibility for various microbiological studies.
ISSN:2331-8422