Comparison of transport models in dense plasmas

We compare a variety of models used for the calculation of transport coefficients in dense plasmas, including average-atom models, models based on kinetic theory, structure matching effective potentials, and pair-potential molecular dynamics. In particular, we focus on the parameter space investigat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2024-08, Vol.31 (8)
Hauptverfasser: Johnson, Zachary A., Silvestri, Luciano G., Petrov, George M., Stanton, Liam G., Murillo, Michael S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Physics of plasmas
container_volume 31
creator Johnson, Zachary A.
Silvestri, Luciano G.
Petrov, George M.
Stanton, Liam G.
Murillo, Michael S.
description We compare a variety of models used for the calculation of transport coefficients in dense plasmas, including average-atom models, models based on kinetic theory, structure matching effective potentials, and pair-potential molecular dynamics. In particular, we focus on the parameter space investigated in the second charged-particle transport coefficient code comparison workshop [Stanek et al., Phys. Plasmas 31, 052104 (2024)]. Each model is based on the self-consistent output of our average-atom calculations. Ionic transport properties are generated from implicit electron pair matched molecular dynamics simulations, bypassing the need for either dynamical electron simulations or on-the-fly electronic structure calculations. These matched pair potentials are generated in a nonlinear way using a classical mapping procedure, further avoiding an expensive force-matching procedure. We compare these results with the density functional theory data presented at the workshop, as well as a set of widely used parametric models, which we have modified to enhance accuracy, especially at the low- and high-temperature extremes of the parameter space. We also detail the non-trivial statistical aspect of converging ionic transport coefficients.
doi_str_mv 10.1063/5.0204226
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3087001631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3087001631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-229749b392091938e89d91f54f66a75098c7bd7a41a9efa3792063ce000514c93</originalsourceid><addsrcrecordid>eNp90E1Lw0AQBuBFFKzVg_9gwZNC2tmP7MdRglWh4EXB27JNdiGlycad9OC_NyU9e5o5PLwzvITcM1gxUGJdroCD5FxdkAUDYwuttLw87RoKpeT3NblB3AOAVKVZkHWVusHnFlNPU6Rj9j0OKY-0S004IG172oQeAx0OHjuPt-Qq-gOGu_Nckq_Ny2f1Vmw_Xt-r521Rc6bHgnOrpd0Jy8EyK0wwtrEsljIq5XUJ1tR612gvmbcheqEnqEQdpr9KJmsrluRhzh1y-jkGHN0-HXM_nXQCjAZgSrBJPc6qzgkxh-iG3HY-_zoG7tSHK925j8k-zRbrdvRjm_p_8B9Z9FzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087001631</pqid></control><display><type>article</type><title>Comparison of transport models in dense plasmas</title><source>Alma/SFX Local Collection</source><creator>Johnson, Zachary A. ; Silvestri, Luciano G. ; Petrov, George M. ; Stanton, Liam G. ; Murillo, Michael S.</creator><creatorcontrib>Johnson, Zachary A. ; Silvestri, Luciano G. ; Petrov, George M. ; Stanton, Liam G. ; Murillo, Michael S.</creatorcontrib><description>We compare a variety of models used for the calculation of transport coefficients in dense plasmas, including average-atom models, models based on kinetic theory, structure matching effective potentials, and pair-potential molecular dynamics. In particular, we focus on the parameter space investigated in the second charged-particle transport coefficient code comparison workshop [Stanek et al., Phys. Plasmas 31, 052104 (2024)]. Each model is based on the self-consistent output of our average-atom calculations. Ionic transport properties are generated from implicit electron pair matched molecular dynamics simulations, bypassing the need for either dynamical electron simulations or on-the-fly electronic structure calculations. These matched pair potentials are generated in a nonlinear way using a classical mapping procedure, further avoiding an expensive force-matching procedure. We compare these results with the density functional theory data presented at the workshop, as well as a set of widely used parametric models, which we have modified to enhance accuracy, especially at the low- and high-temperature extremes of the parameter space. We also detail the non-trivial statistical aspect of converging ionic transport coefficients.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0204226</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Convergence ; Dense plasmas ; Density functional theory ; Dynamic structural analysis ; Electronic structure ; Extreme values ; High temperature ; Kinetic theory ; Matching ; Mathematical analysis ; Molecular dynamics ; Molecular structure ; Parameter modification ; Transport properties ; Workshops</subject><ispartof>Physics of plasmas, 2024-08, Vol.31 (8)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-229749b392091938e89d91f54f66a75098c7bd7a41a9efa3792063ce000514c93</cites><orcidid>0000-0003-3530-7910 ; 0000-0001-8413-6682 ; 0000-0002-9073-3659 ; 0000-0002-4365-929X ; 0000-0002-4455-2021</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Johnson, Zachary A.</creatorcontrib><creatorcontrib>Silvestri, Luciano G.</creatorcontrib><creatorcontrib>Petrov, George M.</creatorcontrib><creatorcontrib>Stanton, Liam G.</creatorcontrib><creatorcontrib>Murillo, Michael S.</creatorcontrib><title>Comparison of transport models in dense plasmas</title><title>Physics of plasmas</title><description>We compare a variety of models used for the calculation of transport coefficients in dense plasmas, including average-atom models, models based on kinetic theory, structure matching effective potentials, and pair-potential molecular dynamics. In particular, we focus on the parameter space investigated in the second charged-particle transport coefficient code comparison workshop [Stanek et al., Phys. Plasmas 31, 052104 (2024)]. Each model is based on the self-consistent output of our average-atom calculations. Ionic transport properties are generated from implicit electron pair matched molecular dynamics simulations, bypassing the need for either dynamical electron simulations or on-the-fly electronic structure calculations. These matched pair potentials are generated in a nonlinear way using a classical mapping procedure, further avoiding an expensive force-matching procedure. We compare these results with the density functional theory data presented at the workshop, as well as a set of widely used parametric models, which we have modified to enhance accuracy, especially at the low- and high-temperature extremes of the parameter space. We also detail the non-trivial statistical aspect of converging ionic transport coefficients.</description><subject>Convergence</subject><subject>Dense plasmas</subject><subject>Density functional theory</subject><subject>Dynamic structural analysis</subject><subject>Electronic structure</subject><subject>Extreme values</subject><subject>High temperature</subject><subject>Kinetic theory</subject><subject>Matching</subject><subject>Mathematical analysis</subject><subject>Molecular dynamics</subject><subject>Molecular structure</subject><subject>Parameter modification</subject><subject>Transport properties</subject><subject>Workshops</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90E1Lw0AQBuBFFKzVg_9gwZNC2tmP7MdRglWh4EXB27JNdiGlycad9OC_NyU9e5o5PLwzvITcM1gxUGJdroCD5FxdkAUDYwuttLw87RoKpeT3NblB3AOAVKVZkHWVusHnFlNPU6Rj9j0OKY-0S004IG172oQeAx0OHjuPt-Qq-gOGu_Nckq_Ny2f1Vmw_Xt-r521Rc6bHgnOrpd0Jy8EyK0wwtrEsljIq5XUJ1tR612gvmbcheqEnqEQdpr9KJmsrluRhzh1y-jkGHN0-HXM_nXQCjAZgSrBJPc6qzgkxh-iG3HY-_zoG7tSHK925j8k-zRbrdvRjm_p_8B9Z9FzA</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Johnson, Zachary A.</creator><creator>Silvestri, Luciano G.</creator><creator>Petrov, George M.</creator><creator>Stanton, Liam G.</creator><creator>Murillo, Michael S.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3530-7910</orcidid><orcidid>https://orcid.org/0000-0001-8413-6682</orcidid><orcidid>https://orcid.org/0000-0002-9073-3659</orcidid><orcidid>https://orcid.org/0000-0002-4365-929X</orcidid><orcidid>https://orcid.org/0000-0002-4455-2021</orcidid></search><sort><creationdate>202408</creationdate><title>Comparison of transport models in dense plasmas</title><author>Johnson, Zachary A. ; Silvestri, Luciano G. ; Petrov, George M. ; Stanton, Liam G. ; Murillo, Michael S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-229749b392091938e89d91f54f66a75098c7bd7a41a9efa3792063ce000514c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Convergence</topic><topic>Dense plasmas</topic><topic>Density functional theory</topic><topic>Dynamic structural analysis</topic><topic>Electronic structure</topic><topic>Extreme values</topic><topic>High temperature</topic><topic>Kinetic theory</topic><topic>Matching</topic><topic>Mathematical analysis</topic><topic>Molecular dynamics</topic><topic>Molecular structure</topic><topic>Parameter modification</topic><topic>Transport properties</topic><topic>Workshops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, Zachary A.</creatorcontrib><creatorcontrib>Silvestri, Luciano G.</creatorcontrib><creatorcontrib>Petrov, George M.</creatorcontrib><creatorcontrib>Stanton, Liam G.</creatorcontrib><creatorcontrib>Murillo, Michael S.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, Zachary A.</au><au>Silvestri, Luciano G.</au><au>Petrov, George M.</au><au>Stanton, Liam G.</au><au>Murillo, Michael S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of transport models in dense plasmas</atitle><jtitle>Physics of plasmas</jtitle><date>2024-08</date><risdate>2024</risdate><volume>31</volume><issue>8</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>We compare a variety of models used for the calculation of transport coefficients in dense plasmas, including average-atom models, models based on kinetic theory, structure matching effective potentials, and pair-potential molecular dynamics. In particular, we focus on the parameter space investigated in the second charged-particle transport coefficient code comparison workshop [Stanek et al., Phys. Plasmas 31, 052104 (2024)]. Each model is based on the self-consistent output of our average-atom calculations. Ionic transport properties are generated from implicit electron pair matched molecular dynamics simulations, bypassing the need for either dynamical electron simulations or on-the-fly electronic structure calculations. These matched pair potentials are generated in a nonlinear way using a classical mapping procedure, further avoiding an expensive force-matching procedure. We compare these results with the density functional theory data presented at the workshop, as well as a set of widely used parametric models, which we have modified to enhance accuracy, especially at the low- and high-temperature extremes of the parameter space. We also detail the non-trivial statistical aspect of converging ionic transport coefficients.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0204226</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-3530-7910</orcidid><orcidid>https://orcid.org/0000-0001-8413-6682</orcidid><orcidid>https://orcid.org/0000-0002-9073-3659</orcidid><orcidid>https://orcid.org/0000-0002-4365-929X</orcidid><orcidid>https://orcid.org/0000-0002-4455-2021</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2024-08, Vol.31 (8)
issn 1070-664X
1089-7674
language eng
recordid cdi_proquest_journals_3087001631
source Alma/SFX Local Collection
subjects Convergence
Dense plasmas
Density functional theory
Dynamic structural analysis
Electronic structure
Extreme values
High temperature
Kinetic theory
Matching
Mathematical analysis
Molecular dynamics
Molecular structure
Parameter modification
Transport properties
Workshops
title Comparison of transport models in dense plasmas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20transport%20models%20in%20dense%20plasmas&rft.jtitle=Physics%20of%20plasmas&rft.au=Johnson,%20Zachary%20A.&rft.date=2024-08&rft.volume=31&rft.issue=8&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0204226&rft_dat=%3Cproquest_cross%3E3087001631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3087001631&rft_id=info:pmid/&rfr_iscdi=true