Comparison of transport models in dense plasmas
We compare a variety of models used for the calculation of transport coefficients in dense plasmas, including average-atom models, models based on kinetic theory, structure matching effective potentials, and pair-potential molecular dynamics. In particular, we focus on the parameter space investigat...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2024-08, Vol.31 (8) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We compare a variety of models used for the calculation of transport coefficients in dense plasmas, including average-atom models, models based on kinetic theory, structure matching effective potentials, and pair-potential molecular dynamics. In particular, we focus on the parameter space investigated in the second charged-particle transport coefficient code comparison workshop [Stanek et al., Phys. Plasmas 31, 052104 (2024)]. Each model is based on the self-consistent output of our average-atom calculations. Ionic transport properties are generated from implicit electron pair matched molecular dynamics simulations, bypassing the need for either dynamical electron simulations or on-the-fly electronic structure calculations. These matched pair potentials are generated in a nonlinear way using a classical mapping procedure, further avoiding an expensive force-matching procedure. We compare these results with the density functional theory data presented at the workshop, as well as a set of widely used parametric models, which we have modified to enhance accuracy, especially at the low- and high-temperature extremes of the parameter space. We also detail the non-trivial statistical aspect of converging ionic transport coefficients. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/5.0204226 |