Pure Torsion for Stretch-Based Constitutive Models for Incompressible Isotropic Hyperelastic Soft Materials
Stretch-based constitutive models for isotropic hyperelastic materials as alternatives to the classical strain invariant models have been the subject of considerable recent attention largely motivated by application to modelling the mechanical response of soft tissues. One such four-parameter consti...
Gespeichert in:
Veröffentlicht in: | Journal of elasticity 2024, Vol.156 (1), p.237-254 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Stretch-based constitutive models for isotropic hyperelastic materials as alternatives to the classical strain invariant models have been the subject of considerable recent attention largely motivated by application to modelling the mechanical response of soft tissues. One such four-parameter constitutive model was proposed recently by Anssari-Benam (J. Elast. 153:219–244,
2023
) for incompressible isotropic hyperelastic soft materials. The model was deemed to be
comprehensive
in that several well-known strain-energies may be recovered for some particular and limiting values of some of the parameters. The model is a generalization of several related simpler models based on microstructural considerations that have been shown to match well with experimental data for a wide variety of soft materials. In particular, the celebrated one-term Ogden model is obtained as a special case. Here we examine the response of the new model for the problem of pure torsion for a solid circular cylinder with particular emphasis on the Poynting effects governing the lengthening or shortening of the cylinder. |
---|---|
ISSN: | 0374-3535 1573-2681 |
DOI: | 10.1007/s10659-024-10048-x |