A New Asteroseismic Kepler Benchmark Constrains the Onset of Weakened Magnetic Braking in Mature Sun-like Stars

Stellar spin down is a critical yet poorly understood component of stellar evolution. In particular, results from the Kepler Mission imply that mature age, solar-type stars have inefficient magnetic braking, resulting in a stalled spin-down rate. However, a large number of precise asteroseismic ages...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2024-08, Vol.970 (2), p.166
Hauptverfasser: Bhalotia, Vanshree, Huber, Daniel, van Saders, Jennifer L., Metcalfe, Travis S., Stassun, Keivan G., White, Timothy R., Aguirre Børsen-Koch, Víctor, Ball, Warrick H., Basu, Sarbani, Serenelli, Aldo M., Sawczynec, Erica, Guzik, Joyce A., Howard, Andrew W., Isaacson, Howard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stellar spin down is a critical yet poorly understood component of stellar evolution. In particular, results from the Kepler Mission imply that mature age, solar-type stars have inefficient magnetic braking, resulting in a stalled spin-down rate. However, a large number of precise asteroseismic ages are needed for mature (≥3 Gyr) stars in order to probe the regime where traditional and stalled spin-down models differ. In this paper, we present a new asteroseismic benchmark star for gyrochronology discovered using reprocessed Kepler short cadence data. KIC 11029516 (Papayu) is a bright ( Kp = 9.6 mag) solar-type star with a well-measured rotation period (21.1 ± 0.8 days) from spot modulation using 4 yr of Kepler long-cadence data. We combine asteroseismology and spectroscopy to obtain T eff = 5888 ± 100 K, [Fe/H] = 0.30 ± 0.06 dex, M = 1.24 ± 0.05 M ⊙ , R = 1.34 ± 0.02 R ⊙ , and age of 4.0 ± 0.4 Gyr, making Papayu one of the most similar stars to the Sun in terms of temperature and radius with an asteroseismic age and a rotation period measured from spot modulation. We find that Papayu sits at the transition of where traditional and weakened spin-down models diverge. A comparison with stars of similar zero-age main-sequence temperatures supports previous findings that weakened spin-down models are required to explain the ages and rotation periods of old solar-type stars.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ad4eb1