Distribution-Path Dependent Nonlinear SPDEs with Application to Stochastic Transport Type Equations
By using a regularity approximation argument, the global existence and uniqueness are derived for a class of nonlinear SPDEs depending on both the whole history and the distribution under strong enough noise. As applications, the global existence and uniqueness are proved for distribution-path depen...
Gespeichert in:
Veröffentlicht in: | Potential analysis 2024, Vol.61 (2), p.379-407 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 407 |
---|---|
container_issue | 2 |
container_start_page | 379 |
container_title | Potential analysis |
container_volume | 61 |
creator | Ren, Panpan Tang, Hao Wang, Feng-Yu |
description | By using a regularity approximation argument, the global existence and uniqueness are derived for a class of nonlinear SPDEs depending on both the whole history and the distribution under strong enough noise. As applications, the global existence and uniqueness are proved for distribution-path dependent stochastic transport type equations, which are arising from stochastic fluid mechanics with forces depending on the history and the environment. In particular, the distribution-path dependent stochastic Camassa-Holm equation with or without Coriolis effect has a unique global solution when the noise is strong enough, whereas for the deterministic model wave-breaking may occur. This indicates that the noise may prevent blow-up almost surely. |
doi_str_mv | 10.1007/s11118-023-10113-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3086030213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086030213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-92626721e7d7ce2e4f0777ad5b5b887520a47288c26fbc99b29c60794ccfd5873</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SS7G52j6WtH1C00AreQjabtSl1s02ySP-9267gzbnMYZ53ZngQuqVwTwHEQ6B95QQYJxQo5SQ9QyOaCkYKVnycoxEULCMsA3qJrkLYAgATIh8hPbMhelt20bqGLFXc4JlpTVOZJuJX1-xsY5THq-VsHvC37ceTtt1ZrY48jg6votMbFaLVeO1VE1rnI14fWoPn--5EhWt0UatdMDe_fYzeH-fr6TNZvD29TCcLojlNYv9pxjLBqBGV0IaZpAYhhKrSMi3zXKQMVCJYnmuW1aUuipIVOgNRJFrXVZoLPkZ3w97Wu31nQpRb1_mmPyk55BlwYJT3FBso7V0I3tSy9fZL-YOkII8y5SBT9jLlSaZM-xAfQqGHm0_j_1b_k_oBRox3ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086030213</pqid></control><display><type>article</type><title>Distribution-Path Dependent Nonlinear SPDEs with Application to Stochastic Transport Type Equations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ren, Panpan ; Tang, Hao ; Wang, Feng-Yu</creator><creatorcontrib>Ren, Panpan ; Tang, Hao ; Wang, Feng-Yu</creatorcontrib><description>By using a regularity approximation argument, the global existence and uniqueness are derived for a class of nonlinear SPDEs depending on both the whole history and the distribution under strong enough noise. As applications, the global existence and uniqueness are proved for distribution-path dependent stochastic transport type equations, which are arising from stochastic fluid mechanics with forces depending on the history and the environment. In particular, the distribution-path dependent stochastic Camassa-Holm equation with or without Coriolis effect has a unique global solution when the noise is strong enough, whereas for the deterministic model wave-breaking may occur. This indicates that the noise may prevent blow-up almost surely.</description><identifier>ISSN: 0926-2601</identifier><identifier>EISSN: 1572-929X</identifier><identifier>DOI: 10.1007/s11118-023-10113-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Coriolis effect ; Fluid dynamics ; Fluid mechanics ; Functional Analysis ; Geometry ; Mathematics ; Mathematics and Statistics ; Partial differential equations ; Potential Theory ; Probability Theory and Stochastic Processes ; Uniqueness ; Wave breaking</subject><ispartof>Potential analysis, 2024, Vol.61 (2), p.379-407</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-92626721e7d7ce2e4f0777ad5b5b887520a47288c26fbc99b29c60794ccfd5873</cites><orcidid>0000-0003-3414-7345</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11118-023-10113-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11118-023-10113-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ren, Panpan</creatorcontrib><creatorcontrib>Tang, Hao</creatorcontrib><creatorcontrib>Wang, Feng-Yu</creatorcontrib><title>Distribution-Path Dependent Nonlinear SPDEs with Application to Stochastic Transport Type Equations</title><title>Potential analysis</title><addtitle>Potential Anal</addtitle><description>By using a regularity approximation argument, the global existence and uniqueness are derived for a class of nonlinear SPDEs depending on both the whole history and the distribution under strong enough noise. As applications, the global existence and uniqueness are proved for distribution-path dependent stochastic transport type equations, which are arising from stochastic fluid mechanics with forces depending on the history and the environment. In particular, the distribution-path dependent stochastic Camassa-Holm equation with or without Coriolis effect has a unique global solution when the noise is strong enough, whereas for the deterministic model wave-breaking may occur. This indicates that the noise may prevent blow-up almost surely.</description><subject>Coriolis effect</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Functional Analysis</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial differential equations</subject><subject>Potential Theory</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Uniqueness</subject><subject>Wave breaking</subject><issn>0926-2601</issn><issn>1572-929X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SS7G52j6WtH1C00AreQjabtSl1s02ySP-9267gzbnMYZ53ZngQuqVwTwHEQ6B95QQYJxQo5SQ9QyOaCkYKVnycoxEULCMsA3qJrkLYAgATIh8hPbMhelt20bqGLFXc4JlpTVOZJuJX1-xsY5THq-VsHvC37ceTtt1ZrY48jg6votMbFaLVeO1VE1rnI14fWoPn--5EhWt0UatdMDe_fYzeH-fr6TNZvD29TCcLojlNYv9pxjLBqBGV0IaZpAYhhKrSMi3zXKQMVCJYnmuW1aUuipIVOgNRJFrXVZoLPkZ3w97Wu31nQpRb1_mmPyk55BlwYJT3FBso7V0I3tSy9fZL-YOkII8y5SBT9jLlSaZM-xAfQqGHm0_j_1b_k_oBRox3ow</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ren, Panpan</creator><creator>Tang, Hao</creator><creator>Wang, Feng-Yu</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3414-7345</orcidid></search><sort><creationdate>2024</creationdate><title>Distribution-Path Dependent Nonlinear SPDEs with Application to Stochastic Transport Type Equations</title><author>Ren, Panpan ; Tang, Hao ; Wang, Feng-Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-92626721e7d7ce2e4f0777ad5b5b887520a47288c26fbc99b29c60794ccfd5873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coriolis effect</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Functional Analysis</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial differential equations</topic><topic>Potential Theory</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Uniqueness</topic><topic>Wave breaking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Panpan</creatorcontrib><creatorcontrib>Tang, Hao</creatorcontrib><creatorcontrib>Wang, Feng-Yu</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Potential analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Panpan</au><au>Tang, Hao</au><au>Wang, Feng-Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distribution-Path Dependent Nonlinear SPDEs with Application to Stochastic Transport Type Equations</atitle><jtitle>Potential analysis</jtitle><stitle>Potential Anal</stitle><date>2024</date><risdate>2024</risdate><volume>61</volume><issue>2</issue><spage>379</spage><epage>407</epage><pages>379-407</pages><issn>0926-2601</issn><eissn>1572-929X</eissn><abstract>By using a regularity approximation argument, the global existence and uniqueness are derived for a class of nonlinear SPDEs depending on both the whole history and the distribution under strong enough noise. As applications, the global existence and uniqueness are proved for distribution-path dependent stochastic transport type equations, which are arising from stochastic fluid mechanics with forces depending on the history and the environment. In particular, the distribution-path dependent stochastic Camassa-Holm equation with or without Coriolis effect has a unique global solution when the noise is strong enough, whereas for the deterministic model wave-breaking may occur. This indicates that the noise may prevent blow-up almost surely.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11118-023-10113-5</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0003-3414-7345</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-2601 |
ispartof | Potential analysis, 2024, Vol.61 (2), p.379-407 |
issn | 0926-2601 1572-929X |
language | eng |
recordid | cdi_proquest_journals_3086030213 |
source | SpringerLink Journals - AutoHoldings |
subjects | Coriolis effect Fluid dynamics Fluid mechanics Functional Analysis Geometry Mathematics Mathematics and Statistics Partial differential equations Potential Theory Probability Theory and Stochastic Processes Uniqueness Wave breaking |
title | Distribution-Path Dependent Nonlinear SPDEs with Application to Stochastic Transport Type Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A19%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distribution-Path%20Dependent%20Nonlinear%20SPDEs%20with%20Application%20to%20Stochastic%20Transport%20Type%20Equations&rft.jtitle=Potential%20analysis&rft.au=Ren,%20Panpan&rft.date=2024&rft.volume=61&rft.issue=2&rft.spage=379&rft.epage=407&rft.pages=379-407&rft.issn=0926-2601&rft.eissn=1572-929X&rft_id=info:doi/10.1007/s11118-023-10113-5&rft_dat=%3Cproquest_cross%3E3086030213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086030213&rft_id=info:pmid/&rfr_iscdi=true |