Distribution-Path Dependent Nonlinear SPDEs with Application to Stochastic Transport Type Equations

By using a regularity approximation argument, the global existence and uniqueness are derived for a class of nonlinear SPDEs depending on both the whole history and the distribution under strong enough noise. As applications, the global existence and uniqueness are proved for distribution-path depen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Potential analysis 2024, Vol.61 (2), p.379-407
Hauptverfasser: Ren, Panpan, Tang, Hao, Wang, Feng-Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By using a regularity approximation argument, the global existence and uniqueness are derived for a class of nonlinear SPDEs depending on both the whole history and the distribution under strong enough noise. As applications, the global existence and uniqueness are proved for distribution-path dependent stochastic transport type equations, which are arising from stochastic fluid mechanics with forces depending on the history and the environment. In particular, the distribution-path dependent stochastic Camassa-Holm equation with or without Coriolis effect has a unique global solution when the noise is strong enough, whereas for the deterministic model wave-breaking may occur. This indicates that the noise may prevent blow-up almost surely.
ISSN:0926-2601
1572-929X
DOI:10.1007/s11118-023-10113-5