The Stochastic Klausmeier System and A Stochastic Schauder-Tychonoff Type Theorem

On the one hand, we investigate the existence and pathwise uniqueness of a nonnegative martingale solution to the stochastic evolution system of nonlinear advection-diffusion equations proposed by Klausmeier with Gaussian multiplicative noise. On the other hand, we present and verify a general stoch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Potential analysis 2024-08, Vol.61 (2), p.185-246
Hauptverfasser: Hausenblas, Erika, Tölle, Jonas M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:On the one hand, we investigate the existence and pathwise uniqueness of a nonnegative martingale solution to the stochastic evolution system of nonlinear advection-diffusion equations proposed by Klausmeier with Gaussian multiplicative noise. On the other hand, we present and verify a general stochastic version of the Schauder-Tychonoff fixed point theorem, as its application is an essential step for showing existence of the solution to the stochastic Klausmeier system. The analysis of the system is based both on variational and semigroup techniques. We also discuss additional regularity properties of the solution.
ISSN:0926-2601
1572-929X
DOI:10.1007/s11118-023-10107-3