Partial Adaptive Indexing for Approximate Query Answering
In data exploration, users need to analyze large data files quickly, aiming to minimize data-to-analysis time. While recent adaptive indexing approaches address this need, they are cases where demonstrate poor performance. Particularly, during the initial queries, in regions with a high density of o...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-07 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In data exploration, users need to analyze large data files quickly, aiming to minimize data-to-analysis time. While recent adaptive indexing approaches address this need, they are cases where demonstrate poor performance. Particularly, during the initial queries, in regions with a high density of objects, and in very large files over commodity hardware. This work introduces an approach for adaptive indexing driven by both query workload and user-defined accuracy constraints to support approximate query answering. The approach is based on partial index adaptation which reduces the costs associated with reading data files and refining indexes. We leverage a hierarchical tile-based indexing scheme and its stored metadata to provide efficient query evaluation, ensuring accuracy within user-specified bounds. Our preliminary evaluation demonstrates improvement on query evaluation time, especially during initial user exploration. |
---|---|
ISSN: | 2331-8422 |