Fujita phenomena in nonlinear fractional Rayleigh-Stokes equations

This paper concerns the Cauchy problems for the nonlinear Rayleigh-Stokes equation and the corresponding system with time-fractional derivative of order \(\alpha\in(0,1)\), which can be used to simulate the anomalous diffusion in viscoelastic fluids. It is shown that there exists the critical Fujita...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Jiang, Yiming, Ren, Jingchuang, Wei, Yawei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper concerns the Cauchy problems for the nonlinear Rayleigh-Stokes equation and the corresponding system with time-fractional derivative of order \(\alpha\in(0,1)\), which can be used to simulate the anomalous diffusion in viscoelastic fluids. It is shown that there exists the critical Fujita exponent which separates systematic blow-up of the solutions from possible global existence, and the critical exponent is independent of the parameter \(\alpha\). Different from the general scaling argument for parabolic problems, the main ingredients of our proof are suitable decay estimates of the solution operator and the construction of the test function.
ISSN:2331-8422