Filtering with Limited Information

We propose a new tool to filter non-linear dynamic models that does not require the researcher to specify the model fully and can be implemented without solving the model. If two conditions are satisfied, we can use a flexible statistical model and a known measurement equation to back out the hidden...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NBER Working Paper Series 2024-07
Hauptverfasser: Oosthuizen, Dick, Drautzburg, Thorsten, Fernández-Villaverde, Jesús, Guerrón-Quintana, Pablo A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a new tool to filter non-linear dynamic models that does not require the researcher to specify the model fully and can be implemented without solving the model. If two conditions are satisfied, we can use a flexible statistical model and a known measurement equation to back out the hidden states of the dynamic model. The first condition is that the state is sufficiently volatile or persistent to be recoverable. The second condition requires the possibly non-linear measurement to be sufficiently smooth and to map uniquely to the state absent measurement error. We illustrate the method through various simulation studies and an empirical application to a sudden stops model applied to Mexican data.
ISSN:0898-2937
DOI:10.3386/w32754