Stability of triple-diffusive convection in a vertical porous layer

The classical Gill's problem, focusing on the stability of thermal buoyancy-driven convection in a vertical porous slab with impermeable isothermal boundaries, is studied from a different perspective by considering a triple-diffusive fluid system having different molecular diffusivities. The as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2024-07, Vol.989, Article A8
Hauptverfasser: Shankar, B.M., Shivakumara, I.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The classical Gill's problem, focusing on the stability of thermal buoyancy-driven convection in a vertical porous slab with impermeable isothermal boundaries, is studied from a different perspective by considering a triple-diffusive fluid system having different molecular diffusivities. The assessment of stability/instability of the basic flow entails a numerical solution of the governing equations for the disturbances as Gill's proof of linear stability falls short. The updated problem formulation is found to introduce instability in contrast to Gill's original set-up. A systematic examination of neutral stability curves is undertaken for KCl–NaCl–sucrose and heat–KCl–sucrose aqueous systems which are found to exhibit an anomalous behaviour on the stability of base flow. It is found that, in some cases, the KCl–NaCl–sucrose system necessitates the requirement of four critical values of the Darcy–Rayleigh number to specify the linear stability criteria ascribed to the existence of two isolated neutral curves positioned one below the other. Conversely, the heat–KCl–sucrose system demands only two critical values of the Darcy–Rayleigh number to decide the stability of the system. The stability boundaries are presented and the emergence of a travelling-wave mode supported back and forth with stationary modes is observed due to the introduction of a third diffusing component. In addition, some intriguing outcomes not recognized hitherto for double-diffusive fluid systems are manifested.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2024.490