On the Stability of Killing Cylinders in Hyperbolic Space

In this paper we study the stability of a Killing cylinder in hyperbolic 3-space when regarded as a capillary surface for the partitioning problem. In contrast with the Euclidean case, we consider a variety of totally umbilical support surfaces, including horospheres, totally geodesic planes, equidi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of geometric analysis 2024-09, Vol.34 (9), Article 281
Hauptverfasser: Bueno, Antonio, López, Rafael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title The Journal of geometric analysis
container_volume 34
creator Bueno, Antonio
López, Rafael
description In this paper we study the stability of a Killing cylinder in hyperbolic 3-space when regarded as a capillary surface for the partitioning problem. In contrast with the Euclidean case, we consider a variety of totally umbilical support surfaces, including horospheres, totally geodesic planes, equidistant surfaces and round spheres. In all of them, we explicitly compute the Morse index of the corresponding eigenvalue problem for the Jacobi operator. We also address the stability of compact pieces of Killing cylinders with Dirichlet boundary conditions when the boundary is formed by two fixed circles, exhibiting an analogous to the Plateau–Rayleigh instability criterion for Killing cylinders in the Euclidean space. Finally, we prove that the Delaunay surfaces can be obtained by bifurcating Killing cylinders supported on geodesic planes.
doi_str_mv 10.1007/s12220-024-01720-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3085103247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3085103247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-fafaf469d2d90bf090372f567c91ce8a9999ef3710d86a7d64c440bdcf2e829a3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD7-gKuA6-rNo0mzlEEdcWAWo-AupGkyZqhtTTqL_nujFdx57-KexTnnwofQFYEbAiBvE6GUQgGUF0BkVtURWpCyVAUAfTvOGkoohKLiFJ2ltAfggnG5QGrT4fHd4e1o6tCGccK9x8-hbUO3w8spn8bFhEOHV9PgYt23weLtYKy7QCfetMld_t5z9Ppw_7JcFevN49Pybl1YCjAW3uTlQjW0UVB7UMAk9aWQVhHrKqPyOM8kgaYSRjaCW86hbqynrqLKsHN0PfcOsf88uDTqfX-IXX6pGVQlAUa5zC46u2zsU4rO6yGGDxMnTUB_I9IzIp0R6R9EusohNodSNnc7F_-q_0l9AezxaA0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085103247</pqid></control><display><type>article</type><title>On the Stability of Killing Cylinders in Hyperbolic Space</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bueno, Antonio ; López, Rafael</creator><creatorcontrib>Bueno, Antonio ; López, Rafael</creatorcontrib><description>In this paper we study the stability of a Killing cylinder in hyperbolic 3-space when regarded as a capillary surface for the partitioning problem. In contrast with the Euclidean case, we consider a variety of totally umbilical support surfaces, including horospheres, totally geodesic planes, equidistant surfaces and round spheres. In all of them, we explicitly compute the Morse index of the corresponding eigenvalue problem for the Jacobi operator. We also address the stability of compact pieces of Killing cylinders with Dirichlet boundary conditions when the boundary is formed by two fixed circles, exhibiting an analogous to the Plateau–Rayleigh instability criterion for Killing cylinders in the Euclidean space. Finally, we prove that the Delaunay surfaces can be obtained by bifurcating Killing cylinders supported on geodesic planes.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-024-01720-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Boundary conditions ; Convex and Discrete Geometry ; Cylinders ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Eigenvalues ; Euclidean geometry ; Fourier Analysis ; Global Analysis and Analysis on Manifolds ; Hyperbolic coordinates ; Mathematics ; Mathematics and Statistics ; Stability criteria ; Surface stability</subject><ispartof>The Journal of geometric analysis, 2024-09, Vol.34 (9), Article 281</ispartof><rights>Mathematica Josephina, Inc. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-fafaf469d2d90bf090372f567c91ce8a9999ef3710d86a7d64c440bdcf2e829a3</cites><orcidid>0000-0003-3108-7009</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12220-024-01720-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12220-024-01720-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bueno, Antonio</creatorcontrib><creatorcontrib>López, Rafael</creatorcontrib><title>On the Stability of Killing Cylinders in Hyperbolic Space</title><title>The Journal of geometric analysis</title><addtitle>J Geom Anal</addtitle><description>In this paper we study the stability of a Killing cylinder in hyperbolic 3-space when regarded as a capillary surface for the partitioning problem. In contrast with the Euclidean case, we consider a variety of totally umbilical support surfaces, including horospheres, totally geodesic planes, equidistant surfaces and round spheres. In all of them, we explicitly compute the Morse index of the corresponding eigenvalue problem for the Jacobi operator. We also address the stability of compact pieces of Killing cylinders with Dirichlet boundary conditions when the boundary is formed by two fixed circles, exhibiting an analogous to the Plateau–Rayleigh instability criterion for Killing cylinders in the Euclidean space. Finally, we prove that the Delaunay surfaces can be obtained by bifurcating Killing cylinders supported on geodesic planes.</description><subject>Abstract Harmonic Analysis</subject><subject>Boundary conditions</subject><subject>Convex and Discrete Geometry</subject><subject>Cylinders</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Eigenvalues</subject><subject>Euclidean geometry</subject><subject>Fourier Analysis</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Hyperbolic coordinates</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Stability criteria</subject><subject>Surface stability</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD7-gKuA6-rNo0mzlEEdcWAWo-AupGkyZqhtTTqL_nujFdx57-KexTnnwofQFYEbAiBvE6GUQgGUF0BkVtURWpCyVAUAfTvOGkoohKLiFJ2ltAfggnG5QGrT4fHd4e1o6tCGccK9x8-hbUO3w8spn8bFhEOHV9PgYt23weLtYKy7QCfetMld_t5z9Ppw_7JcFevN49Pybl1YCjAW3uTlQjW0UVB7UMAk9aWQVhHrKqPyOM8kgaYSRjaCW86hbqynrqLKsHN0PfcOsf88uDTqfX-IXX6pGVQlAUa5zC46u2zsU4rO6yGGDxMnTUB_I9IzIp0R6R9EusohNodSNnc7F_-q_0l9AezxaA0</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Bueno, Antonio</creator><creator>López, Rafael</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3108-7009</orcidid></search><sort><creationdate>20240901</creationdate><title>On the Stability of Killing Cylinders in Hyperbolic Space</title><author>Bueno, Antonio ; López, Rafael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-fafaf469d2d90bf090372f567c91ce8a9999ef3710d86a7d64c440bdcf2e829a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Boundary conditions</topic><topic>Convex and Discrete Geometry</topic><topic>Cylinders</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Eigenvalues</topic><topic>Euclidean geometry</topic><topic>Fourier Analysis</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Hyperbolic coordinates</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Stability criteria</topic><topic>Surface stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bueno, Antonio</creatorcontrib><creatorcontrib>López, Rafael</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of geometric analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bueno, Antonio</au><au>López, Rafael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Stability of Killing Cylinders in Hyperbolic Space</atitle><jtitle>The Journal of geometric analysis</jtitle><stitle>J Geom Anal</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>34</volume><issue>9</issue><artnum>281</artnum><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>In this paper we study the stability of a Killing cylinder in hyperbolic 3-space when regarded as a capillary surface for the partitioning problem. In contrast with the Euclidean case, we consider a variety of totally umbilical support surfaces, including horospheres, totally geodesic planes, equidistant surfaces and round spheres. In all of them, we explicitly compute the Morse index of the corresponding eigenvalue problem for the Jacobi operator. We also address the stability of compact pieces of Killing cylinders with Dirichlet boundary conditions when the boundary is formed by two fixed circles, exhibiting an analogous to the Plateau–Rayleigh instability criterion for Killing cylinders in the Euclidean space. Finally, we prove that the Delaunay surfaces can be obtained by bifurcating Killing cylinders supported on geodesic planes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-024-01720-8</doi><orcidid>https://orcid.org/0000-0003-3108-7009</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1050-6926
ispartof The Journal of geometric analysis, 2024-09, Vol.34 (9), Article 281
issn 1050-6926
1559-002X
language eng
recordid cdi_proquest_journals_3085103247
source SpringerLink Journals - AutoHoldings
subjects Abstract Harmonic Analysis
Boundary conditions
Convex and Discrete Geometry
Cylinders
Differential Geometry
Dynamical Systems and Ergodic Theory
Eigenvalues
Euclidean geometry
Fourier Analysis
Global Analysis and Analysis on Manifolds
Hyperbolic coordinates
Mathematics
Mathematics and Statistics
Stability criteria
Surface stability
title On the Stability of Killing Cylinders in Hyperbolic Space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A29%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Stability%20of%20Killing%20Cylinders%20in%20Hyperbolic%20Space&rft.jtitle=The%20Journal%20of%20geometric%20analysis&rft.au=Bueno,%20Antonio&rft.date=2024-09-01&rft.volume=34&rft.issue=9&rft.artnum=281&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-024-01720-8&rft_dat=%3Cproquest_cross%3E3085103247%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3085103247&rft_id=info:pmid/&rfr_iscdi=true