On the Stability of Killing Cylinders in Hyperbolic Space

In this paper we study the stability of a Killing cylinder in hyperbolic 3-space when regarded as a capillary surface for the partitioning problem. In contrast with the Euclidean case, we consider a variety of totally umbilical support surfaces, including horospheres, totally geodesic planes, equidi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of geometric analysis 2024-09, Vol.34 (9), Article 281
Hauptverfasser: Bueno, Antonio, López, Rafael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study the stability of a Killing cylinder in hyperbolic 3-space when regarded as a capillary surface for the partitioning problem. In contrast with the Euclidean case, we consider a variety of totally umbilical support surfaces, including horospheres, totally geodesic planes, equidistant surfaces and round spheres. In all of them, we explicitly compute the Morse index of the corresponding eigenvalue problem for the Jacobi operator. We also address the stability of compact pieces of Killing cylinders with Dirichlet boundary conditions when the boundary is formed by two fixed circles, exhibiting an analogous to the Plateau–Rayleigh instability criterion for Killing cylinders in the Euclidean space. Finally, we prove that the Delaunay surfaces can be obtained by bifurcating Killing cylinders supported on geodesic planes.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-024-01720-8