On the Stability of Killing Cylinders in Hyperbolic Space
In this paper we study the stability of a Killing cylinder in hyperbolic 3-space when regarded as a capillary surface for the partitioning problem. In contrast with the Euclidean case, we consider a variety of totally umbilical support surfaces, including horospheres, totally geodesic planes, equidi...
Gespeichert in:
Veröffentlicht in: | The Journal of geometric analysis 2024-09, Vol.34 (9), Article 281 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study the stability of a Killing cylinder in hyperbolic 3-space when regarded as a capillary surface for the partitioning problem. In contrast with the Euclidean case, we consider a variety of totally umbilical support surfaces, including horospheres, totally geodesic planes, equidistant surfaces and round spheres. In all of them, we explicitly compute the Morse index of the corresponding eigenvalue problem for the Jacobi operator. We also address the stability of compact pieces of Killing cylinders with Dirichlet boundary conditions when the boundary is formed by two fixed circles, exhibiting an analogous to the Plateau–Rayleigh instability criterion for Killing cylinders in the Euclidean space. Finally, we prove that the Delaunay surfaces can be obtained by bifurcating Killing cylinders supported on geodesic planes. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-024-01720-8 |