Arctic Sea Ice Variations in the First Half of the 20th Century: A New Reconstruction Based on Hydrometeorological Data

The shrinking Arctic sea-ice area (SIA) in recent decades is a striking manifestation of the ongoing climate change. Variations of the Arctic sea ice have been continuously observed by satellites since 1979, relatively well monitored since the 1950s, but are highly uncertain in the earlier period du...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in atmospheric sciences 2024-08, Vol.41 (8), p.1483-1495
Hauptverfasser: Semenov, Vladimir A., Aldonina, Tatiana A., Li, Fei, Keenlyside, Noel Sebastian, Wang, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The shrinking Arctic sea-ice area (SIA) in recent decades is a striking manifestation of the ongoing climate change. Variations of the Arctic sea ice have been continuously observed by satellites since 1979, relatively well monitored since the 1950s, but are highly uncertain in the earlier period due to a lack of observations. Several reconstructions of the historical gridded sea-ice concentration (SIC) data were recently presented based on synthesized regional sea-ice observations or by applying a hybrid model–empirical approach. Here, we present an SIC reconstruction for the period 1901–2019 based on established co-variability between SIC and surface air temperature, sea surface temperature, and sea level pressure patterns. The reconstructed sea-ice data for March and September are compared to the frequently used HadISST1.1 and SIBT1850 datasets. Our reconstruction shows a large decrease in SIA from the 1920 to 1940 concurrent with the Early 20th Century Warming event in the Arctic. Such a negative SIA anomaly is absent in HadISST1.1 data. The amplitude of the SIA anomaly reaches about 0.8 mln km 2 in March and 1.5 mln km 2 in September. The anomaly is about three times stronger than that in the SIBT1850 dataset. The larger decrease in SIA in September is largely due to the stronger SIC reduction in the western sector of the Arctic Ocean in the 70°–80°N latitudinal zone. Our reconstruction provides gridded monthly data that can be used as boundary conditions for atmospheric reanalyses and model experiments to study the Arctic climate for the first half of the 20th century.
ISSN:0256-1530
1861-9533
DOI:10.1007/s00376-024-3320-x