Logarithmic Sobolev Inequalities, Gaussian Upper Bounds for the Heat Kernel, and the G2-Laplacian Flow
We prove a logarithmic Sobolev inequality along the G 2 -Laplacian flow. A uniform Sololev inequality along the G 2 -Laplacian flow with uniformly bounded scalar curvature is derived from the logarithmic Sobolev inequality. The uniform Sololev inequality implies a κ -noncollapsing estimate for the G...
Gespeichert in:
Veröffentlicht in: | The Journal of geometric analysis 2024, Vol.34 (9) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a logarithmic Sobolev inequality along the
G
2
-Laplacian flow. A uniform Sololev inequality along the
G
2
-Laplacian flow with uniformly bounded scalar curvature is derived from the logarithmic Sobolev inequality. The uniform Sololev inequality implies a
κ
-noncollapsing estimate for the
G
2
-Laplacian flow with uniformly bounded scalar curvature. Furthermore, by using the logarithmic Sobolev inequality, we prove Gaussian-type upper bounds for the heat kernel along the
G
2
-Laplacian flow with uniformly bounded scalar curvature. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-024-01697-4 |