Logarithmic Sobolev Inequalities, Gaussian Upper Bounds for the Heat Kernel, and the G2-Laplacian Flow

We prove a logarithmic Sobolev inequality along the G 2 -Laplacian flow. A uniform Sololev inequality along the G 2 -Laplacian flow with uniformly bounded scalar curvature is derived from the logarithmic Sobolev inequality. The uniform Sololev inequality implies a κ -noncollapsing estimate for the G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of geometric analysis 2024, Vol.34 (9)
1. Verfasser: Ishida, Masashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a logarithmic Sobolev inequality along the G 2 -Laplacian flow. A uniform Sololev inequality along the G 2 -Laplacian flow with uniformly bounded scalar curvature is derived from the logarithmic Sobolev inequality. The uniform Sololev inequality implies a κ -noncollapsing estimate for the G 2 -Laplacian flow with uniformly bounded scalar curvature. Furthermore, by using the logarithmic Sobolev inequality, we prove Gaussian-type upper bounds for the heat kernel along the G 2 -Laplacian flow with uniformly bounded scalar curvature.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-024-01697-4