Parallel-Plate Capacitor Titanium Nitride Kinetic Inductance Detectors for Infrared Astronomy

The Balloon Experiment for Galactic INfrared Science (BEGINS) is a concept for a sub-orbital observatory that will operate from λ = 25 to 250 μ m to characterize dust in the vicinity of high-mass stars. The mission’s sensitivity requirements will be met by utilizing arrays of 1840 lens-coupled, lump...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of low temperature physics 2024, Vol.216 (1-2), p.39-49
Hauptverfasser: Perido, J., Day, P. K., Beyer, A. D., Cothard, N. F., Hailey-Dunsheath, S., Leduc, H. G., Eom, B. H., Glenn, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Balloon Experiment for Galactic INfrared Science (BEGINS) is a concept for a sub-orbital observatory that will operate from λ = 25 to 250 μ m to characterize dust in the vicinity of high-mass stars. The mission’s sensitivity requirements will be met by utilizing arrays of 1840 lens-coupled, lumped-element kinetic inductance detectors (KIDs) operating at 300 mK. Each KID will consist of a titanium nitride (TiN) parallel strip absorbing inductive section and parallel plate capacitor deposited on a Silicon (Si) substrate. The parallel plate capacitor geometry allows for reduction of the pixel spacing. At the BEGINS focal plane, the detectors require optical NEPs from 2 × 10 - 16 to 6 × 10 - 17 W/ Hz from 25 to 250 μ m for optical loads ranging from 4 to 10 pW. We present the design, optical performance and quasiparticle lifetime measurements of a prototype BEGINS KID array at 25 μ m when coupled to Fresnel zone plate lenses. For our optical set up and the absorption efficiency of the KIDs, the electrical NEP requirement at 25 μ m is 7.6 × 10 - 17 W/ Hz for an absorbed optical power of 0.36 pW. We find that over an average of five resonators the the detectors are photon noise limited down to about 200 fW, with a limiting NEP of about 7.4 × 10 - 17 W/ Hz . Future arrays will be coupled to microlens arrays and have higher optical efficiencies.
ISSN:0022-2291
1573-7357
DOI:10.1007/s10909-024-03101-5