System-Level Simulation Framework for NB-IoT: Key Features and Performance Evaluation
Narrowband Internet of Things (NB-IoT) is a technology specifically designated by the 3rd Generation Partnership Project (3GPP) to meet the explosive demand for massive machine-type communications (mMTC), and it is evolving to RedCap. Industrial companies have increasingly adopted NB-IoT as the solu...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Narrowband Internet of Things (NB-IoT) is a technology specifically designated by the 3rd Generation Partnership Project (3GPP) to meet the explosive demand for massive machine-type communications (mMTC), and it is evolving to RedCap. Industrial companies have increasingly adopted NB-IoT as the solution for mMTC due to its lightweight design and comprehensive technical specifications released by 3GPP. This paper presents a system-level simulation framework for NB-IoT networks to evaluate their performance. The system-level simulator is structured into four parts: initialization, pre-generation, main simulation loop, and post-processing. Additionally, three essential features are investigated to enhance coverage, support massive connections, and ensure low power consumption, respectively. Simulation results demonstrate that the cumulative distribution function curves of the signal-to-interference-and-noise ratio fully comply with industrial standards. Furthermore, the throughput performance explains how NB-IoT networks realize massive connections at the cost of data rate. This work highlights its practical utility and paves the way for developing NB-IoT networks. |
---|---|
ISSN: | 2331-8422 |