Comprehensive Utilization of Fossil Energy: Fabrication of Fire-Retardant Building Materials from Waste Plastic
As one of the most common fossil derivatives, plastics are widely used for their exceptional chemical stability, low density, and ease of processing. In recent years, there has been a significant increase in the production of waste plastics, coupled with a low recycling rate, resulting in serious en...
Gespeichert in:
Veröffentlicht in: | Journal of composites science 2024-07, Vol.8 (7), p.266 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As one of the most common fossil derivatives, plastics are widely used for their exceptional chemical stability, low density, and ease of processing. In recent years, there has been a significant increase in the production of waste plastics, coupled with a low recycling rate, resulting in serious environmental pollution. To enhance the use of waste plastics, this research synthesized flame-retardant materials from hypercrosslinked polystyrene with different molar fractions of flame retardants. Waste polystyrene foam was used as the raw material, while aniline, triphenylphosphine, and melamine were employed as flame-retardant additives. The flame-retardant additives were successfully doped into the porous skeleton structure of hypercrosslinked polystyrene through a chemical reaction or physical mixing to achieve in situ flame retardancy, and the materials were shaped by a phenolic resin prepolymer. Then, the samples were characterized in detail, and the results indicate that the addition of a flame retardant enhances the flame retardancy of the material. In addition, the material has excellent thermal insulation performance, with a minimum thermal conductivity of 0.04176 W/(m·K). |
---|---|
ISSN: | 2504-477X 2504-477X |
DOI: | 10.3390/jcs8070266 |