The Influence of Bias Voltage on the Structure and Properties of TiZrNbMo Coating Deposited by Magnetron Sputtering

TiZrNbMo coatings have been deposited using the direct current pulsed magnetron sputtering method in an argon atmosphere. The synthesis processes have been conducted under various process parameters. The structure (chemical and phase composition) and mechanical properties of the obtained multicompon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coatings (Basel) 2024-07, Vol.14 (7), p.844
Hauptverfasser: Romaniuk, Svitlana, Nowakowska-Langier, Katarzyna, Strzelecki, Grzegorz Witold, Mulewska, Katarzyna, Minikayev, Roman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:TiZrNbMo coatings have been deposited using the direct current pulsed magnetron sputtering method in an argon atmosphere. The synthesis processes have been conducted under various process parameters. The structure (chemical and phase composition) and mechanical properties of the obtained multicomponent coatings are investigated as a function of plasma modulation frequency (10 Hz and 1000 Hz) and substrate bias (0 to −150 V). It is the case that an increase in the substrate bias decreases the deposition rate and alters the coating’s chemical composition. The latter leads to a Ti concentration decrease and a simultaneous increase in Mo and Nb concentrations in the final coating material. X-ray diffraction measurements indicate a single-phase BCC structure, with grain size decreasing as substrate bias increases. This ultimately forms an amorphous–nanocrystalline structure at −150 V. The mechanical properties of the multicomponent TiZrNbMo coatings have been determined using the nanoindentation method. The maximum values of hardness (13.45 GPa) and elastic modulus (188.6 GPa) are achieved at a substrate bias of −150 V. We also show that the minimum elastic modulus (41.8 GPa) is achieved at an intermediate substrate bias of −100 V.
ISSN:2079-6412
2079-6412
DOI:10.3390/coatings14070844