Adsorption Capability and Mechanism of Pb(II) Using MgO Nanomaterials Synthesized by Ultrasonic Electrodeposition
This work describes the process of synthesizing magnesia (MgO) nanomaterials through ultrasonic electrodeposition, followed by an examination of their ability and mechanism to remove Pb(II) from industrial soil at 100, 150, and 200 W ultrasonic powers. Nanomaterials were examined for their surface s...
Gespeichert in:
Veröffentlicht in: | Coatings (Basel) 2024-07, Vol.14 (7), p.891 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work describes the process of synthesizing magnesia (MgO) nanomaterials through ultrasonic electrodeposition, followed by an examination of their ability and mechanism to remove Pb(II) from industrial soil at 100, 150, and 200 W ultrasonic powers. Nanomaterials were examined for their surface shape and phase composition using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffractometry (XRD). The capability of magnesia nanomaterials to adsorb Pb(II) improved greatly when operated at 150 W, attaining a maximal 68.94 mg/g value. Adsorption of Pb(II) onto magnesia nanomaterial surfaces was examined by utilizing the pseudo-second-order kinetic and Langmuir models. The nanomaterials exhibited significant features of both chemical and monolayer adsorptions for Pb(II) as a result of the intense chemical interactions between the atoms of the magnesia nanomaterials’ surface and Pb(II), as shown by Fourier transform infrared (FTIR) analysis. At 30 °C, the magnesia nanomaterial exhibited the highest adsorption capacity for Pb(II), suggesting that temperature played a significant role in this capacity. Furthermore, the Langmuir model produced a correlation coefficient greater than 0.99, indicating an excellent fit for the adsorption behavior of magnesia towards Pb(II). The findings suggest that ultrasonic power significantly impacts the adsorption characteristics of magnesia nanoparticles synthesized via ultrasonic electrodeposition. Specifically, ultrasonic power of 150 W yields the most efficient adsorption characteristics. Moreover, the 150 W-fabricated magnesia materials demonstrated exceptional pH compatibility. |
---|---|
ISSN: | 2079-6412 2079-6412 |
DOI: | 10.3390/coatings14070891 |