Constraining Displacement Magnitude on Crustal‐Scale Extensional Faults Using Thermochronology Combined With Flexural‐Kinematic and Thermal‐Kinematic Modeling: An Example From the Teton Fault, Wyoming, USA
Constraining the geometry and displacement of crustal‐scale normal faults has historically been challenging, owing to difficulties with geophysical imaging and inability to identify precise cut‐offs at depth. Using a modified workflow previously applied to contractional systems, flexural‐kinematic (...
Gespeichert in:
Veröffentlicht in: | Tectonics (Washington, D.C.) D.C.), 2024-07, Vol.43 (7), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Constraining the geometry and displacement of crustal‐scale normal faults has historically been challenging, owing to difficulties with geophysical imaging and inability to identify precise cut‐offs at depth. Using a modified workflow previously applied to contractional systems, flexural‐kinematic (Move) and thermal‐kinematic (Pecube) models are integrated with apatite (U‐Th)/He (AHe) and apatite fission track (AFT) data from Teton footwall transects to constrain total Teton fault displacement (Dmax). Models with slip onset at ∼10 Ma and flexure parameters that best match the observed Teton flexural profile require Dmax > 8 km to produce young (11 km and potentially >16 km of normal displacement |
---|---|
ISSN: | 0278-7407 1944-9194 |
DOI: | 10.1029/2024TC008308 |