Constraining Displacement Magnitude on Crustal‐Scale Extensional Faults Using Thermochronology Combined With Flexural‐Kinematic and Thermal‐Kinematic Modeling: An Example From the Teton Fault, Wyoming, USA

Constraining the geometry and displacement of crustal‐scale normal faults has historically been challenging, owing to difficulties with geophysical imaging and inability to identify precise cut‐offs at depth. Using a modified workflow previously applied to contractional systems, flexural‐kinematic (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tectonics (Washington, D.C.) D.C.), 2024-07, Vol.43 (7), p.n/a
Hauptverfasser: Helfrich, Autumn L., Thigpen, J. Ryan, Buford‐Parks, Victoria M., McQuarrie, Nadine, Brown, Summer J., Goldsby, Ryan C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Constraining the geometry and displacement of crustal‐scale normal faults has historically been challenging, owing to difficulties with geophysical imaging and inability to identify precise cut‐offs at depth. Using a modified workflow previously applied to contractional systems, flexural‐kinematic (Move) and thermal‐kinematic (Pecube) models are integrated with apatite (U‐Th)/He (AHe) and apatite fission track (AFT) data from Teton footwall transects to constrain total Teton fault displacement (Dmax). Models with slip onset at ∼10 Ma and flexure parameters that best match the observed Teton flexural profile require Dmax > 8 km to produce young (11 km and potentially >16 km of normal displacement
ISSN:0278-7407
1944-9194
DOI:10.1029/2024TC008308