Mask focal loss: a unifying framework for dense crowd counting with canonical object detection networks

As a fundamental computer vision task, crowd counting plays an important role in public safety. Currently, deep learning based head detection is a promising method for crowd counting. However, the highly concerned object detection networks cannot be well applied to this problem for three reasons: (1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2024-01, Vol.83 (27), p.70571-70593
Hauptverfasser: Zhong, Xiaopin, Wang, Guankun, Liu, Weixiang, Wu, Zongze, Deng, Yuanlong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a fundamental computer vision task, crowd counting plays an important role in public safety. Currently, deep learning based head detection is a promising method for crowd counting. However, the highly concerned object detection networks cannot be well applied to this problem for three reasons: (1) Existing loss functions fail to address sample imbalance in highly dense and complex scenes; (2) Canonical object detectors lack spatial coherence in loss calculation, disregarding the relationship between object location and background region; (3) Most of the head detection datasets are only annotated with the center points, i.e. without bounding boxes. To overcome these issues, we propose a novel Mask Focal Loss (MFL) based on heatmap via the Gaussian kernel. MFL provides a unifying framework for the loss functions based on both heatmap and binary feature map ground truths. Additionally, we introduce GTA_Head, a synthetic dataset with comprehensive annotations, for evaluation and comparison. Extensive experimental results demonstrate the superior performance of our MFL across various detectors and datasets, and it can reduce MAE and RMSE by up to 47.03% and 61.99%, respectively. Therefore, our work presents a strong foundation for advancing crowd counting methods based on density estimation.
ISSN:1573-7721
1380-7501
1573-7721
DOI:10.1007/s11042-024-18134-x