On computing small variable disjunction branch-and-bound trees

This article investigates smallest branch-and-bound trees and their computation. We first revisit the notion of hiding sets to deduce lower bounds on the size of branch-and-bound trees for certain binary programs, using both variable disjunctions and general disjunctions. We then provide exponential...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2024-07, Vol.206 (1-2), p.145-173
Hauptverfasser: Gläser, Max, Pfetsch, Marc E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article investigates smallest branch-and-bound trees and their computation. We first revisit the notion of hiding sets to deduce lower bounds on the size of branch-and-bound trees for certain binary programs, using both variable disjunctions and general disjunctions. We then provide exponential lower bounds for variable disjunctions by a disjoint composition of smaller binary programs. Moreover, we investigate the complexity of finding small branch-and-bound trees using variable disjunctions: We show that it is not possible to approximate the size of a smallest branch-and-bound tree within a factor of  2 1 5 n in time  O ( 2 δ n ) with δ < 1 5 , unless the strong exponential time hypothesis fails. Similarly, for any  ε > 0 , no polynomial time 2 ( 1 2 - ε ) n -approximation is possible, unless  P = NP . We also show that computing the size of a smallest branch-and-bound tree exactly is  # P -hard. Similar results hold for estimating the size of the tree produced by branching rules like most-infeasible branching. Finally, we discuss that finding small branch-and-bound trees generalizes finding short treelike resolution refutations, and thus non-automatizability results transfer from this setting.
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-023-01968-y