The Lions Derivative in Infinite Dimensions and Higher Order Expansion of Mean-Field SPDEs

In this paper we present a new interpretation of the Lions derivative as the Radon-Nikodym derivative of a vector measure, which provides a canonical extension of the Lions derivative for functions taking values in infinite dimensional Banach spaces. This is of particular relevance for the analysis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Vogler, Alexander, Stannat, Wilhelm
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we present a new interpretation of the Lions derivative as the Radon-Nikodym derivative of a vector measure, which provides a canonical extension of the Lions derivative for functions taking values in infinite dimensional Banach spaces. This is of particular relevance for the analysis of Hilbert space valued Mean-Field equations. As an illustration we derive a mild Ito-formula for Mean-Field stochastic partial differential equations (SPDEs), which provides the basis for a higher order Taylor expansion and higher order numerical schemes.
ISSN:2331-8422