DataStorm-EM: Exploration of Alternative Timelines within Continuous-Coupled Simulation Ensembles

Many socio-economical critical domains (such as sustainability, public health, and disasters) are characterized by highly complex and dynamic systems, requiring data and model-driven simulations to support decision-making. Due to a large number of unknowns, decision-makers usually need to generate e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Azad, Fahim Tasneema, Javier Redondo Anton, Mitra, Shubhodeep, Singh, Fateh, Behrens, Hans, Mao-Lin, Li, Arslan, Bilgehan, Candan, K Selçuk, Sapino, Maria Luisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Azad, Fahim Tasneema
Javier Redondo Anton
Mitra, Shubhodeep
Singh, Fateh
Behrens, Hans
Mao-Lin, Li
Arslan, Bilgehan
Candan, K Selçuk
Sapino, Maria Luisa
description Many socio-economical critical domains (such as sustainability, public health, and disasters) are characterized by highly complex and dynamic systems, requiring data and model-driven simulations to support decision-making. Due to a large number of unknowns, decision-makers usually need to generate ensembles of stochastic scenarios, requiring hundreds or thousands of individual simulation instances, each with different parameter settings corresponding to distinct scenarios, As the number of model parameters increases, the number of potential timelines one can simulate increases exponentially. Consequently, simulation ensembles are inherently sparse, even when they are extremely large. This necessitates a platform for (a) deciding which simulation instances to execute and (b) given a large simulation ensemble, enabling decision-makers to explore the resulting alternative timelines, by extracting and visualizing consistent, yet diverse timelines from continuous-coupled simulation ensembles. In this article, we present DataStorm-EM platform for data- and model-driven simulation ensemble management, optimization, analysis, and exploration, describe underlying challenges and present our solution.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3083765813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3083765813</sourcerecordid><originalsourceid>FETCH-proquest_journals_30837658133</originalsourceid><addsrcrecordid>eNqNjc0KgkAURocgSMp3GGgt6Ez-0C7MaNNK9zLRlUbGueadqR4_oR6g1ceBc_gWLBBSJlGxE2LFQqI-jmOR5SJNZcDUUTlVO5yGqLrsefUeDU7KabQcO34wDiY74xN4owcw2gLxl3Z3bXmJ1mnr0VNUoh8N3HitB2--dWUJhqsB2rBlpwxB-Ns1256qpjxH44QPD-TaHv18YqiVcSHzLC0SKf-zPnFHRd8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3083765813</pqid></control><display><type>article</type><title>DataStorm-EM: Exploration of Alternative Timelines within Continuous-Coupled Simulation Ensembles</title><source>Free E- Journals</source><creator>Azad, Fahim Tasneema ; Javier Redondo Anton ; Mitra, Shubhodeep ; Singh, Fateh ; Behrens, Hans ; Mao-Lin, Li ; Arslan, Bilgehan ; Candan, K Selçuk ; Sapino, Maria Luisa</creator><creatorcontrib>Azad, Fahim Tasneema ; Javier Redondo Anton ; Mitra, Shubhodeep ; Singh, Fateh ; Behrens, Hans ; Mao-Lin, Li ; Arslan, Bilgehan ; Candan, K Selçuk ; Sapino, Maria Luisa</creatorcontrib><description>Many socio-economical critical domains (such as sustainability, public health, and disasters) are characterized by highly complex and dynamic systems, requiring data and model-driven simulations to support decision-making. Due to a large number of unknowns, decision-makers usually need to generate ensembles of stochastic scenarios, requiring hundreds or thousands of individual simulation instances, each with different parameter settings corresponding to distinct scenarios, As the number of model parameters increases, the number of potential timelines one can simulate increases exponentially. Consequently, simulation ensembles are inherently sparse, even when they are extremely large. This necessitates a platform for (a) deciding which simulation instances to execute and (b) given a large simulation ensemble, enabling decision-makers to explore the resulting alternative timelines, by extracting and visualizing consistent, yet diverse timelines from continuous-coupled simulation ensembles. In this article, we present DataStorm-EM platform for data- and model-driven simulation ensemble management, optimization, analysis, and exploration, describe underlying challenges and present our solution.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Decision making ; Parameters ; Public health ; Simulation</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Azad, Fahim Tasneema</creatorcontrib><creatorcontrib>Javier Redondo Anton</creatorcontrib><creatorcontrib>Mitra, Shubhodeep</creatorcontrib><creatorcontrib>Singh, Fateh</creatorcontrib><creatorcontrib>Behrens, Hans</creatorcontrib><creatorcontrib>Mao-Lin, Li</creatorcontrib><creatorcontrib>Arslan, Bilgehan</creatorcontrib><creatorcontrib>Candan, K Selçuk</creatorcontrib><creatorcontrib>Sapino, Maria Luisa</creatorcontrib><title>DataStorm-EM: Exploration of Alternative Timelines within Continuous-Coupled Simulation Ensembles</title><title>arXiv.org</title><description>Many socio-economical critical domains (such as sustainability, public health, and disasters) are characterized by highly complex and dynamic systems, requiring data and model-driven simulations to support decision-making. Due to a large number of unknowns, decision-makers usually need to generate ensembles of stochastic scenarios, requiring hundreds or thousands of individual simulation instances, each with different parameter settings corresponding to distinct scenarios, As the number of model parameters increases, the number of potential timelines one can simulate increases exponentially. Consequently, simulation ensembles are inherently sparse, even when they are extremely large. This necessitates a platform for (a) deciding which simulation instances to execute and (b) given a large simulation ensemble, enabling decision-makers to explore the resulting alternative timelines, by extracting and visualizing consistent, yet diverse timelines from continuous-coupled simulation ensembles. In this article, we present DataStorm-EM platform for data- and model-driven simulation ensemble management, optimization, analysis, and exploration, describe underlying challenges and present our solution.</description><subject>Decision making</subject><subject>Parameters</subject><subject>Public health</subject><subject>Simulation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjc0KgkAURocgSMp3GGgt6Ez-0C7MaNNK9zLRlUbGueadqR4_oR6g1ceBc_gWLBBSJlGxE2LFQqI-jmOR5SJNZcDUUTlVO5yGqLrsefUeDU7KabQcO34wDiY74xN4owcw2gLxl3Z3bXmJ1mnr0VNUoh8N3HitB2--dWUJhqsB2rBlpwxB-Ns1256qpjxH44QPD-TaHv18YqiVcSHzLC0SKf-zPnFHRd8</recordid><startdate>20240719</startdate><enddate>20240719</enddate><creator>Azad, Fahim Tasneema</creator><creator>Javier Redondo Anton</creator><creator>Mitra, Shubhodeep</creator><creator>Singh, Fateh</creator><creator>Behrens, Hans</creator><creator>Mao-Lin, Li</creator><creator>Arslan, Bilgehan</creator><creator>Candan, K Selçuk</creator><creator>Sapino, Maria Luisa</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240719</creationdate><title>DataStorm-EM: Exploration of Alternative Timelines within Continuous-Coupled Simulation Ensembles</title><author>Azad, Fahim Tasneema ; Javier Redondo Anton ; Mitra, Shubhodeep ; Singh, Fateh ; Behrens, Hans ; Mao-Lin, Li ; Arslan, Bilgehan ; Candan, K Selçuk ; Sapino, Maria Luisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30837658133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Decision making</topic><topic>Parameters</topic><topic>Public health</topic><topic>Simulation</topic><toplevel>online_resources</toplevel><creatorcontrib>Azad, Fahim Tasneema</creatorcontrib><creatorcontrib>Javier Redondo Anton</creatorcontrib><creatorcontrib>Mitra, Shubhodeep</creatorcontrib><creatorcontrib>Singh, Fateh</creatorcontrib><creatorcontrib>Behrens, Hans</creatorcontrib><creatorcontrib>Mao-Lin, Li</creatorcontrib><creatorcontrib>Arslan, Bilgehan</creatorcontrib><creatorcontrib>Candan, K Selçuk</creatorcontrib><creatorcontrib>Sapino, Maria Luisa</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azad, Fahim Tasneema</au><au>Javier Redondo Anton</au><au>Mitra, Shubhodeep</au><au>Singh, Fateh</au><au>Behrens, Hans</au><au>Mao-Lin, Li</au><au>Arslan, Bilgehan</au><au>Candan, K Selçuk</au><au>Sapino, Maria Luisa</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>DataStorm-EM: Exploration of Alternative Timelines within Continuous-Coupled Simulation Ensembles</atitle><jtitle>arXiv.org</jtitle><date>2024-07-19</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Many socio-economical critical domains (such as sustainability, public health, and disasters) are characterized by highly complex and dynamic systems, requiring data and model-driven simulations to support decision-making. Due to a large number of unknowns, decision-makers usually need to generate ensembles of stochastic scenarios, requiring hundreds or thousands of individual simulation instances, each with different parameter settings corresponding to distinct scenarios, As the number of model parameters increases, the number of potential timelines one can simulate increases exponentially. Consequently, simulation ensembles are inherently sparse, even when they are extremely large. This necessitates a platform for (a) deciding which simulation instances to execute and (b) given a large simulation ensemble, enabling decision-makers to explore the resulting alternative timelines, by extracting and visualizing consistent, yet diverse timelines from continuous-coupled simulation ensembles. In this article, we present DataStorm-EM platform for data- and model-driven simulation ensemble management, optimization, analysis, and exploration, describe underlying challenges and present our solution.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_3083765813
source Free E- Journals
subjects Decision making
Parameters
Public health
Simulation
title DataStorm-EM: Exploration of Alternative Timelines within Continuous-Coupled Simulation Ensembles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=DataStorm-EM:%20Exploration%20of%20Alternative%20Timelines%20within%20Continuous-Coupled%20Simulation%20Ensembles&rft.jtitle=arXiv.org&rft.au=Azad,%20Fahim%20Tasneema&rft.date=2024-07-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3083765813%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3083765813&rft_id=info:pmid/&rfr_iscdi=true