DataStorm-EM: Exploration of Alternative Timelines within Continuous-Coupled Simulation Ensembles

Many socio-economical critical domains (such as sustainability, public health, and disasters) are characterized by highly complex and dynamic systems, requiring data and model-driven simulations to support decision-making. Due to a large number of unknowns, decision-makers usually need to generate e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Azad, Fahim Tasneema, Javier Redondo Anton, Mitra, Shubhodeep, Singh, Fateh, Behrens, Hans, Mao-Lin, Li, Arslan, Bilgehan, Candan, K Selçuk, Sapino, Maria Luisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many socio-economical critical domains (such as sustainability, public health, and disasters) are characterized by highly complex and dynamic systems, requiring data and model-driven simulations to support decision-making. Due to a large number of unknowns, decision-makers usually need to generate ensembles of stochastic scenarios, requiring hundreds or thousands of individual simulation instances, each with different parameter settings corresponding to distinct scenarios, As the number of model parameters increases, the number of potential timelines one can simulate increases exponentially. Consequently, simulation ensembles are inherently sparse, even when they are extremely large. This necessitates a platform for (a) deciding which simulation instances to execute and (b) given a large simulation ensemble, enabling decision-makers to explore the resulting alternative timelines, by extracting and visualizing consistent, yet diverse timelines from continuous-coupled simulation ensembles. In this article, we present DataStorm-EM platform for data- and model-driven simulation ensemble management, optimization, analysis, and exploration, describe underlying challenges and present our solution.
ISSN:2331-8422