On near orthogonality of certain k-vectors involving generalized Ramanujan sums

The near orthgonality of certain k -vectors involving the Ramanujan sums were studied by Alkan (J Number Theory 140:147–168, 2014). Here we undertake the study of similar vectors involving a generalization of the Ramanujan sums defined by Cohen (Duke Math J 16(2):85–90, 1949). We also prove that the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Ramanujan journal 2024-08, Vol.64 (4), p.1421-1441
Hauptverfasser: Thomas, Neha Elizabeth, Namboothiri, K. Vishnu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The near orthgonality of certain k -vectors involving the Ramanujan sums were studied by Alkan (J Number Theory 140:147–168, 2014). Here we undertake the study of similar vectors involving a generalization of the Ramanujan sums defined by Cohen (Duke Math J 16(2):85–90, 1949). We also prove that the weighted average 1 k s ( r + 1 ) ∑ j = 1 k s j r c k ( s ) ( j ) remains positive for all r ≥ 1 . Further, we give a lower bound for max N ∑ j = 1 N s c k ( s ) ( j ) .
ISSN:1382-4090
1572-9303
DOI:10.1007/s11139-024-00874-x