On near orthogonality of certain k-vectors involving generalized Ramanujan sums
The near orthgonality of certain k -vectors involving the Ramanujan sums were studied by Alkan (J Number Theory 140:147–168, 2014). Here we undertake the study of similar vectors involving a generalization of the Ramanujan sums defined by Cohen (Duke Math J 16(2):85–90, 1949). We also prove that the...
Gespeichert in:
Veröffentlicht in: | The Ramanujan journal 2024-08, Vol.64 (4), p.1421-1441 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The near orthgonality of certain
k
-vectors involving the Ramanujan sums were studied by Alkan (J Number Theory 140:147–168, 2014). Here we undertake the study of similar vectors involving a generalization of the Ramanujan sums defined by Cohen (Duke Math J 16(2):85–90, 1949). We also prove that the weighted average
1
k
s
(
r
+
1
)
∑
j
=
1
k
s
j
r
c
k
(
s
)
(
j
)
remains positive for all
r
≥
1
. Further, we give a lower bound for
max
N
∑
j
=
1
N
s
c
k
(
s
)
(
j
)
. |
---|---|
ISSN: | 1382-4090 1572-9303 |
DOI: | 10.1007/s11139-024-00874-x |