On effective irrationality exponents of cubic irrationals

We provide an upper bound for the effective irrationality exponents of cubic algebraics x with the minimal polynomial x 3 - t x 2 - a . In particular, we show that it becomes non-trivial, i.e. better than the classical bound of Liouville, in the case | t | > 19.71 a 4 / 3 . Moreover, under the co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Ramanujan journal 2024-08, Vol.64 (4), p.1457-1478
1. Verfasser: Badziahin, Dzmitry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide an upper bound for the effective irrationality exponents of cubic algebraics x with the minimal polynomial x 3 - t x 2 - a . In particular, we show that it becomes non-trivial, i.e. better than the classical bound of Liouville, in the case | t | > 19.71 a 4 / 3 . Moreover, under the condition | t | > 86.58 a 4 / 3 , we provide an explicit lower bound for the expression || qx || for all large q ∈ Z . These results are based on the recently discovered continued fractions of cubic irrationals and improve the currently best-known bounds of Wakabayashi.
ISSN:1382-4090
1572-9303
DOI:10.1007/s11139-024-00877-8