On effective irrationality exponents of cubic irrationals
We provide an upper bound for the effective irrationality exponents of cubic algebraics x with the minimal polynomial x 3 - t x 2 - a . In particular, we show that it becomes non-trivial, i.e. better than the classical bound of Liouville, in the case | t | > 19.71 a 4 / 3 . Moreover, under the co...
Gespeichert in:
Veröffentlicht in: | The Ramanujan journal 2024-08, Vol.64 (4), p.1457-1478 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We provide an upper bound for the effective irrationality exponents of cubic algebraics
x
with the minimal polynomial
x
3
-
t
x
2
-
a
. In particular, we show that it becomes non-trivial, i.e. better than the classical bound of Liouville, in the case
|
t
|
>
19.71
a
4
/
3
. Moreover, under the condition
|
t
|
>
86.58
a
4
/
3
, we provide an explicit lower bound for the expression ||
qx
|| for all large
q
∈
Z
. These results are based on the recently discovered continued fractions of cubic irrationals and improve the currently best-known bounds of Wakabayashi. |
---|---|
ISSN: | 1382-4090 1572-9303 |
DOI: | 10.1007/s11139-024-00877-8 |