Exact solutions to SIR epidemic models via integrable discretization
An integrable discretization of the SIR model with vaccination is proposed. Through the discretization, the conserved quantities of the continuous model are inherited to the discrete model, since the discretization is based on the intersection structure of the non-algebraic invariant curve defined b...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2024-07, Vol.65 (7) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An integrable discretization of the SIR model with vaccination is proposed. Through the discretization, the conserved quantities of the continuous model are inherited to the discrete model, since the discretization is based on the intersection structure of the non-algebraic invariant curve defined by the conserved quantities. Uniqueness of the forward/backward evolution of the discrete model is demonstrated in terms of the single-valuedness of the Lambert W function on the positive real axis. Furthermore, the exact solution to the continuous SIR model with vaccination is constructed via the integrable discretization. When applied to the original SIR model, the discretization procedure leads to two kinds of integrable discretization, and the exact solution to the continuous SIR model is also deduced. It is furthermore shown that the discrete SIR model geometrically linearizes the time evolution by using the non-autonomous parallel translation of the line intersecting the invariant curve. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/5.0152442 |