Synergistic effect of Ni doping on the dielectric and electrochemical properties of WO3 nanostructures for supercapacitor applications

The present work explores a systematic investigation of the microstructural, optical, and dielectric properties of W 1− x Ni x O 3 ( x  = 0, 0.02, 0.04, and 0.06) samples and their application in supercapacitors. The sol–gel auto-combustion process was used to synthesize these samples, and a number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2024-07, Vol.35 (21), p.1450, Article 1450
Hauptverfasser: Abushad, M., Khan, Rayyan Ubaid, Arshad, M., Nadeem, M., Ahmed, Hilal, Ansari, M. Yusuf, Riyaz, Husain, Shahid, Khan, Wasi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page 1450
container_title Journal of materials science. Materials in electronics
container_volume 35
creator Abushad, M.
Khan, Rayyan Ubaid
Arshad, M.
Nadeem, M.
Ahmed, Hilal
Ansari, M. Yusuf
Riyaz
Husain, Shahid
Khan, Wasi
description The present work explores a systematic investigation of the microstructural, optical, and dielectric properties of W 1− x Ni x O 3 ( x  = 0, 0.02, 0.04, and 0.06) samples and their application in supercapacitors. The sol–gel auto-combustion process was used to synthesize these samples, and a number of analytical techniques such as x-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, Raman, Scanning Electron Microscopy (SEM), UV–visible spectroscopy, dielectric measurements, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) were used to characterize them. The Rietveld refined XRD patterns confirm the monoclinic phase with space group P21/n in a single phase. FTIR spectroscopy confirms the functional groups associated with stretching and bending vibrational modes at various wavenumbers. Raman spectroscopy ensures the phase purity of the materials and shows a blue shift with Ni doping. SEM microscopy reveals a uniform surface morphology as well as particle agglomeration at the surface. UV–visible studies reveal a significant decrease in the bandgap (2.13–1.81 eV) as the Ni concentration is increased. Dielectric studies show that as the frequency rises, the dielectric constant decreases and becomes saturated at higher frequencies. The highest value of the dielectric constant (ε') is observed for the 4% Ni-doped WO 3 sample. The electrochemical and capacitive properties have been characterized and studied using CV and EIS analysis. Cyclic voltammetry tests were carried out in the range of − 0.2 to 0.8 V with varying scan rates (5–100 mVs −1 ), exhibiting a significantly large area under the CV curve, hence higher values of specific capacitance. The maximum specific capacitance at a scan rate of 5 mVs −1 for each sample of W 1− x Ni x O 3 ( x  = 0, 0.02, 0.04, and 0.06) is found to be 126.671, 192.31, 278.52, and 128.58 Fg −1 , respectively, in 2M KOH electrolyte. Thus, the synthesized samples exhibit potential for application as electrode materials for supercapacitors.
doi_str_mv 10.1007/s10854-024-13112-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3083011083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3083011083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-4d146c65af27a9cee83dca574cf0dea141be31251b4d6d91e7c6b60746ea7f793</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA82q-drM9SvELxB5U9BbS7KSmtMmaZA_9A_5uU1fw5ilM5nlmhhehc0ouKSHyKlHS1qIiTFSUU8oqfoAmtJa8Ei17P0QTMqtlJWrGjtFJSmtCSCN4O0FfzzsPceVSdgaDtWAyDhY_OdyF3vkVDh7nD8Cdg03pxUJp3-GxCOYDts7oDe5j6CFmB2lvvy049tqHlONg8hDLrw0Rp6EwRvfauFxK3febImcXfDpFR1ZvEpz9vlP0envzMr-vHhd3D_Prx8owQnIlOioa09TaMqlnBqDlndG1FMaSDjQVdAmcspouRdd0MwrSNMuGSNGAllbO-BRdjHPLwZ8DpKzWYYi-rFSctJzQkiMvFBspE0NKEazqo9vquFOUqH3easxblbzVT95qL_FRSgX2K4h_o_-xvgFBeYaC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3083011083</pqid></control><display><type>article</type><title>Synergistic effect of Ni doping on the dielectric and electrochemical properties of WO3 nanostructures for supercapacitor applications</title><source>SpringerLink Journals - AutoHoldings</source><creator>Abushad, M. ; Khan, Rayyan Ubaid ; Arshad, M. ; Nadeem, M. ; Ahmed, Hilal ; Ansari, M. Yusuf ; Riyaz ; Husain, Shahid ; Khan, Wasi</creator><creatorcontrib>Abushad, M. ; Khan, Rayyan Ubaid ; Arshad, M. ; Nadeem, M. ; Ahmed, Hilal ; Ansari, M. Yusuf ; Riyaz ; Husain, Shahid ; Khan, Wasi</creatorcontrib><description>The present work explores a systematic investigation of the microstructural, optical, and dielectric properties of W 1− x Ni x O 3 ( x  = 0, 0.02, 0.04, and 0.06) samples and their application in supercapacitors. The sol–gel auto-combustion process was used to synthesize these samples, and a number of analytical techniques such as x-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, Raman, Scanning Electron Microscopy (SEM), UV–visible spectroscopy, dielectric measurements, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) were used to characterize them. The Rietveld refined XRD patterns confirm the monoclinic phase with space group P21/n in a single phase. FTIR spectroscopy confirms the functional groups associated with stretching and bending vibrational modes at various wavenumbers. Raman spectroscopy ensures the phase purity of the materials and shows a blue shift with Ni doping. SEM microscopy reveals a uniform surface morphology as well as particle agglomeration at the surface. UV–visible studies reveal a significant decrease in the bandgap (2.13–1.81 eV) as the Ni concentration is increased. Dielectric studies show that as the frequency rises, the dielectric constant decreases and becomes saturated at higher frequencies. The highest value of the dielectric constant (ε') is observed for the 4% Ni-doped WO 3 sample. The electrochemical and capacitive properties have been characterized and studied using CV and EIS analysis. Cyclic voltammetry tests were carried out in the range of − 0.2 to 0.8 V with varying scan rates (5–100 mVs −1 ), exhibiting a significantly large area under the CV curve, hence higher values of specific capacitance. The maximum specific capacitance at a scan rate of 5 mVs −1 for each sample of W 1− x Ni x O 3 ( x  = 0, 0.02, 0.04, and 0.06) is found to be 126.671, 192.31, 278.52, and 128.58 Fg −1 , respectively, in 2M KOH electrolyte. Thus, the synthesized samples exhibit potential for application as electrode materials for supercapacitors.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-024-13112-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Blue shift ; Capacitance ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Dielectric properties ; Doping ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrode materials ; Fourier transforms ; Functional groups ; Infrared analysis ; Infrared spectroscopy ; Materials Science ; Optical and Electronic Materials ; Optical properties ; Permittivity ; Raman spectroscopy ; Scanning electron microscopy ; Sol-gel processes ; Spectroscopic analysis ; Spectrum analysis ; Supercapacitors ; Synergistic effect ; Synthesis ; Vibration mode ; Voltammetry ; X-ray diffraction</subject><ispartof>Journal of materials science. Materials in electronics, 2024-07, Vol.35 (21), p.1450, Article 1450</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-4d146c65af27a9cee83dca574cf0dea141be31251b4d6d91e7c6b60746ea7f793</cites><orcidid>0009-0005-6833-3009</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-024-13112-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-024-13112-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Abushad, M.</creatorcontrib><creatorcontrib>Khan, Rayyan Ubaid</creatorcontrib><creatorcontrib>Arshad, M.</creatorcontrib><creatorcontrib>Nadeem, M.</creatorcontrib><creatorcontrib>Ahmed, Hilal</creatorcontrib><creatorcontrib>Ansari, M. Yusuf</creatorcontrib><creatorcontrib>Riyaz</creatorcontrib><creatorcontrib>Husain, Shahid</creatorcontrib><creatorcontrib>Khan, Wasi</creatorcontrib><title>Synergistic effect of Ni doping on the dielectric and electrochemical properties of WO3 nanostructures for supercapacitor applications</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>The present work explores a systematic investigation of the microstructural, optical, and dielectric properties of W 1− x Ni x O 3 ( x  = 0, 0.02, 0.04, and 0.06) samples and their application in supercapacitors. The sol–gel auto-combustion process was used to synthesize these samples, and a number of analytical techniques such as x-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, Raman, Scanning Electron Microscopy (SEM), UV–visible spectroscopy, dielectric measurements, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) were used to characterize them. The Rietveld refined XRD patterns confirm the monoclinic phase with space group P21/n in a single phase. FTIR spectroscopy confirms the functional groups associated with stretching and bending vibrational modes at various wavenumbers. Raman spectroscopy ensures the phase purity of the materials and shows a blue shift with Ni doping. SEM microscopy reveals a uniform surface morphology as well as particle agglomeration at the surface. UV–visible studies reveal a significant decrease in the bandgap (2.13–1.81 eV) as the Ni concentration is increased. Dielectric studies show that as the frequency rises, the dielectric constant decreases and becomes saturated at higher frequencies. The highest value of the dielectric constant (ε') is observed for the 4% Ni-doped WO 3 sample. The electrochemical and capacitive properties have been characterized and studied using CV and EIS analysis. Cyclic voltammetry tests were carried out in the range of − 0.2 to 0.8 V with varying scan rates (5–100 mVs −1 ), exhibiting a significantly large area under the CV curve, hence higher values of specific capacitance. The maximum specific capacitance at a scan rate of 5 mVs −1 for each sample of W 1− x Ni x O 3 ( x  = 0, 0.02, 0.04, and 0.06) is found to be 126.671, 192.31, 278.52, and 128.58 Fg −1 , respectively, in 2M KOH electrolyte. Thus, the synthesized samples exhibit potential for application as electrode materials for supercapacitors.</description><subject>Blue shift</subject><subject>Capacitance</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Dielectric properties</subject><subject>Doping</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrode materials</subject><subject>Fourier transforms</subject><subject>Functional groups</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Permittivity</subject><subject>Raman spectroscopy</subject><subject>Scanning electron microscopy</subject><subject>Sol-gel processes</subject><subject>Spectroscopic analysis</subject><subject>Spectrum analysis</subject><subject>Supercapacitors</subject><subject>Synergistic effect</subject><subject>Synthesis</subject><subject>Vibration mode</subject><subject>Voltammetry</subject><subject>X-ray diffraction</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPA82q-drM9SvELxB5U9BbS7KSmtMmaZA_9A_5uU1fw5ilM5nlmhhehc0ouKSHyKlHS1qIiTFSUU8oqfoAmtJa8Ei17P0QTMqtlJWrGjtFJSmtCSCN4O0FfzzsPceVSdgaDtWAyDhY_OdyF3vkVDh7nD8Cdg03pxUJp3-GxCOYDts7oDe5j6CFmB2lvvy049tqHlONg8hDLrw0Rp6EwRvfauFxK3febImcXfDpFR1ZvEpz9vlP0envzMr-vHhd3D_Prx8owQnIlOioa09TaMqlnBqDlndG1FMaSDjQVdAmcspouRdd0MwrSNMuGSNGAllbO-BRdjHPLwZ8DpKzWYYi-rFSctJzQkiMvFBspE0NKEazqo9vquFOUqH3easxblbzVT95qL_FRSgX2K4h_o_-xvgFBeYaC</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Abushad, M.</creator><creator>Khan, Rayyan Ubaid</creator><creator>Arshad, M.</creator><creator>Nadeem, M.</creator><creator>Ahmed, Hilal</creator><creator>Ansari, M. Yusuf</creator><creator>Riyaz</creator><creator>Husain, Shahid</creator><creator>Khan, Wasi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0005-6833-3009</orcidid></search><sort><creationdate>20240701</creationdate><title>Synergistic effect of Ni doping on the dielectric and electrochemical properties of WO3 nanostructures for supercapacitor applications</title><author>Abushad, M. ; Khan, Rayyan Ubaid ; Arshad, M. ; Nadeem, M. ; Ahmed, Hilal ; Ansari, M. Yusuf ; Riyaz ; Husain, Shahid ; Khan, Wasi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-4d146c65af27a9cee83dca574cf0dea141be31251b4d6d91e7c6b60746ea7f793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Blue shift</topic><topic>Capacitance</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Dielectric properties</topic><topic>Doping</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrode materials</topic><topic>Fourier transforms</topic><topic>Functional groups</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Permittivity</topic><topic>Raman spectroscopy</topic><topic>Scanning electron microscopy</topic><topic>Sol-gel processes</topic><topic>Spectroscopic analysis</topic><topic>Spectrum analysis</topic><topic>Supercapacitors</topic><topic>Synergistic effect</topic><topic>Synthesis</topic><topic>Vibration mode</topic><topic>Voltammetry</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abushad, M.</creatorcontrib><creatorcontrib>Khan, Rayyan Ubaid</creatorcontrib><creatorcontrib>Arshad, M.</creatorcontrib><creatorcontrib>Nadeem, M.</creatorcontrib><creatorcontrib>Ahmed, Hilal</creatorcontrib><creatorcontrib>Ansari, M. Yusuf</creatorcontrib><creatorcontrib>Riyaz</creatorcontrib><creatorcontrib>Husain, Shahid</creatorcontrib><creatorcontrib>Khan, Wasi</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abushad, M.</au><au>Khan, Rayyan Ubaid</au><au>Arshad, M.</au><au>Nadeem, M.</au><au>Ahmed, Hilal</au><au>Ansari, M. Yusuf</au><au>Riyaz</au><au>Husain, Shahid</au><au>Khan, Wasi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic effect of Ni doping on the dielectric and electrochemical properties of WO3 nanostructures for supercapacitor applications</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>35</volume><issue>21</issue><spage>1450</spage><pages>1450-</pages><artnum>1450</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>The present work explores a systematic investigation of the microstructural, optical, and dielectric properties of W 1− x Ni x O 3 ( x  = 0, 0.02, 0.04, and 0.06) samples and their application in supercapacitors. The sol–gel auto-combustion process was used to synthesize these samples, and a number of analytical techniques such as x-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, Raman, Scanning Electron Microscopy (SEM), UV–visible spectroscopy, dielectric measurements, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) were used to characterize them. The Rietveld refined XRD patterns confirm the monoclinic phase with space group P21/n in a single phase. FTIR spectroscopy confirms the functional groups associated with stretching and bending vibrational modes at various wavenumbers. Raman spectroscopy ensures the phase purity of the materials and shows a blue shift with Ni doping. SEM microscopy reveals a uniform surface morphology as well as particle agglomeration at the surface. UV–visible studies reveal a significant decrease in the bandgap (2.13–1.81 eV) as the Ni concentration is increased. Dielectric studies show that as the frequency rises, the dielectric constant decreases and becomes saturated at higher frequencies. The highest value of the dielectric constant (ε') is observed for the 4% Ni-doped WO 3 sample. The electrochemical and capacitive properties have been characterized and studied using CV and EIS analysis. Cyclic voltammetry tests were carried out in the range of − 0.2 to 0.8 V with varying scan rates (5–100 mVs −1 ), exhibiting a significantly large area under the CV curve, hence higher values of specific capacitance. The maximum specific capacitance at a scan rate of 5 mVs −1 for each sample of W 1− x Ni x O 3 ( x  = 0, 0.02, 0.04, and 0.06) is found to be 126.671, 192.31, 278.52, and 128.58 Fg −1 , respectively, in 2M KOH electrolyte. Thus, the synthesized samples exhibit potential for application as electrode materials for supercapacitors.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-024-13112-3</doi><orcidid>https://orcid.org/0009-0005-6833-3009</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2024-07, Vol.35 (21), p.1450, Article 1450
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_3083011083
source SpringerLink Journals - AutoHoldings
subjects Blue shift
Capacitance
Characterization and Evaluation of Materials
Chemistry and Materials Science
Dielectric properties
Doping
Electrochemical analysis
Electrochemical impedance spectroscopy
Electrode materials
Fourier transforms
Functional groups
Infrared analysis
Infrared spectroscopy
Materials Science
Optical and Electronic Materials
Optical properties
Permittivity
Raman spectroscopy
Scanning electron microscopy
Sol-gel processes
Spectroscopic analysis
Spectrum analysis
Supercapacitors
Synergistic effect
Synthesis
Vibration mode
Voltammetry
X-ray diffraction
title Synergistic effect of Ni doping on the dielectric and electrochemical properties of WO3 nanostructures for supercapacitor applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A07%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20effect%20of%20Ni%20doping%20on%20the%20dielectric%20and%20electrochemical%20properties%20of%20WO3%20nanostructures%20for%20supercapacitor%20applications&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Abushad,%20M.&rft.date=2024-07-01&rft.volume=35&rft.issue=21&rft.spage=1450&rft.pages=1450-&rft.artnum=1450&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-024-13112-3&rft_dat=%3Cproquest_cross%3E3083011083%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3083011083&rft_id=info:pmid/&rfr_iscdi=true