Impact of satellite clock modeling on the GNSS-based geocenter motion determination

In the geocenter motion determination using the Global Navigation Satellite Systems (GNSS), satellite clock offsets are usually estimated as white noise process. The correlation between geocenter coordinates (GCC) and the epoch-wise satellite clocks brings inferior GCC estimates, especially for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geodesy 2024-08, Vol.98 (8), Article 70
Hauptverfasser: Guo, Shiwei, Fan, Lei, Wei, Na, Gu, Shengfeng, Fang, Xinqi, Jing, Guifei, Shi, Chuang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the geocenter motion determination using the Global Navigation Satellite Systems (GNSS), satellite clock offsets are usually estimated as white noise process. The correlation between geocenter coordinates (GCC) and the epoch-wise satellite clocks brings inferior GCC estimates, especially for the Z component. In this contribution, satellite clock offsets are described by the polynomial model, and the deviation of the model from the truth is estimated as a random parameter whose process noise is described by the variogram. Based on 3.7 years of BDS, Galileo and GPS observations from 98 global stations, we investigate the impact of the atomic clock model on GCC estimates. After employing the proposed model, the formal errors of GCC-Z component are reduced by 23–46%, 15–31% and 3–9% for BDS, Galileo and GPS, respectively. When the 7-parameter extended empirical CODE orbit model with the a priori box-wing model (BE7) is used, the atomic clock model reduces the correlation of the B 1C parameter and GCC-Z component by 0.28, 0.23 and 0.07 for BDS, Galileo and GPS, respectively. Besides, a mitigation of about 60% is obtained at the 3rd and 5th BDS draconitic harmonics and a mitigation of 55% at the 3rd Galileo draconitic harmonic for the GCC-Z component. The proposed model also contributes to reduce the annual amplitudes of single BDS, Galileo and GPS solutions, improving the agreement with the Satellite Laser Ranging solutions. As an additional verification, the resulting satellite orbits are also improved by satellite clock modeling. When the BE7 model is applied, the day boundary discontinuities of daily orbits are reduced by 3.4–3.6%, and the RMS of orbit differences relative to the ESA precise orbits is reduced by 8.2–8.5% for BDS and Galileo.
ISSN:0949-7714
1432-1394
DOI:10.1007/s00190-024-01879-6