Non-smoothness of the fundamental solutions for Schrödinger equations with super-quadratic and spherically symmetric potential

We study non-smoothness of the fundamental solution for the Schrödinger equation with a spherically symmetric and super-quadratic potential in the sense that V(x) ≥ C|x|2+ɛ at infinity with constants C > 0 and ɛ > 0. More precisely, we show the fundamental solution E(t, x, y) does not belong t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2024-07, Vol.65 (7)
Hauptverfasser: Kato, Keiichi, Nakahashi, Wataru, Tadano, Yukihide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Journal of mathematical physics
container_volume 65
creator Kato, Keiichi
Nakahashi, Wataru
Tadano, Yukihide
description We study non-smoothness of the fundamental solution for the Schrödinger equation with a spherically symmetric and super-quadratic potential in the sense that V(x) ≥ C|x|2+ɛ at infinity with constants C > 0 and ɛ > 0. More precisely, we show the fundamental solution E(t, x, y) does not belong to C1 as a function of (t, x, y), which partially solves Yajima’s conjecture.
doi_str_mv 10.1063/5.0184443
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3082690925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082690925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-dc0e139a7014969263938d86a1aa25fb1c0a3316ff9fedd1068558aa454ad01b3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsL3yDgSmFqLpNpspTiDYou1PWQ5uJMmUmmSQbpyrfyBXwxo-3a1eH85-M_8AFwjtEMo4pesxnCvCxLegAmGHFRzCvGD8EEIUIKUnJ-DE5iXCOEf7EJ-Hzyroi996lxJkboLUyNgXZ0WvbGJdnB6Lsxtd5FaH2AL6oJ31-6de8mQLMZ5e700aYGxnEwociZDjlWUDoN49CY0CrZdVsYt31vUt7g4FMub2V3Co6s7KI5288peLu7fV08FMvn-8fFzbJQmJNUaIUMpkLOES5FJUhFBeWaVxJLSZhdYYUkpbiyVlijdVbBGeNSlqyUGuEVnYKLXe8Q_GY0MdVrPwaXX9YUcVIJJAjL1OWOUsHHGIyth9D2MmxrjOpfvzWr934ze7Vjo2rTn4V_4B_oIH3i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082690925</pqid></control><display><type>article</type><title>Non-smoothness of the fundamental solutions for Schrödinger equations with super-quadratic and spherically symmetric potential</title><source>AIP Journals Complete</source><creator>Kato, Keiichi ; Nakahashi, Wataru ; Tadano, Yukihide</creator><creatorcontrib>Kato, Keiichi ; Nakahashi, Wataru ; Tadano, Yukihide</creatorcontrib><description>We study non-smoothness of the fundamental solution for the Schrödinger equation with a spherically symmetric and super-quadratic potential in the sense that V(x) ≥ C|x|2+ɛ at infinity with constants C &gt; 0 and ɛ &gt; 0. More precisely, we show the fundamental solution E(t, x, y) does not belong to C1 as a function of (t, x, y), which partially solves Yajima’s conjecture.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0184443</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Schrodinger equation ; Smoothness</subject><ispartof>Journal of mathematical physics, 2024-07, Vol.65 (7)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-dc0e139a7014969263938d86a1aa25fb1c0a3316ff9fedd1068558aa454ad01b3</cites><orcidid>0009-0005-7641-188X ; 0000-0003-1520-1246 ; 0000-0002-8101-5241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0184443$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Kato, Keiichi</creatorcontrib><creatorcontrib>Nakahashi, Wataru</creatorcontrib><creatorcontrib>Tadano, Yukihide</creatorcontrib><title>Non-smoothness of the fundamental solutions for Schrödinger equations with super-quadratic and spherically symmetric potential</title><title>Journal of mathematical physics</title><description>We study non-smoothness of the fundamental solution for the Schrödinger equation with a spherically symmetric and super-quadratic potential in the sense that V(x) ≥ C|x|2+ɛ at infinity with constants C &gt; 0 and ɛ &gt; 0. More precisely, we show the fundamental solution E(t, x, y) does not belong to C1 as a function of (t, x, y), which partially solves Yajima’s conjecture.</description><subject>Schrodinger equation</subject><subject>Smoothness</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsL3yDgSmFqLpNpspTiDYou1PWQ5uJMmUmmSQbpyrfyBXwxo-3a1eH85-M_8AFwjtEMo4pesxnCvCxLegAmGHFRzCvGD8EEIUIKUnJ-DE5iXCOEf7EJ-Hzyroi996lxJkboLUyNgXZ0WvbGJdnB6Lsxtd5FaH2AL6oJ31-6de8mQLMZ5e700aYGxnEwociZDjlWUDoN49CY0CrZdVsYt31vUt7g4FMub2V3Co6s7KI5288peLu7fV08FMvn-8fFzbJQmJNUaIUMpkLOES5FJUhFBeWaVxJLSZhdYYUkpbiyVlijdVbBGeNSlqyUGuEVnYKLXe8Q_GY0MdVrPwaXX9YUcVIJJAjL1OWOUsHHGIyth9D2MmxrjOpfvzWr934ze7Vjo2rTn4V_4B_oIH3i</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Kato, Keiichi</creator><creator>Nakahashi, Wataru</creator><creator>Tadano, Yukihide</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0005-7641-188X</orcidid><orcidid>https://orcid.org/0000-0003-1520-1246</orcidid><orcidid>https://orcid.org/0000-0002-8101-5241</orcidid></search><sort><creationdate>20240701</creationdate><title>Non-smoothness of the fundamental solutions for Schrödinger equations with super-quadratic and spherically symmetric potential</title><author>Kato, Keiichi ; Nakahashi, Wataru ; Tadano, Yukihide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-dc0e139a7014969263938d86a1aa25fb1c0a3316ff9fedd1068558aa454ad01b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Schrodinger equation</topic><topic>Smoothness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kato, Keiichi</creatorcontrib><creatorcontrib>Nakahashi, Wataru</creatorcontrib><creatorcontrib>Tadano, Yukihide</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kato, Keiichi</au><au>Nakahashi, Wataru</au><au>Tadano, Yukihide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-smoothness of the fundamental solutions for Schrödinger equations with super-quadratic and spherically symmetric potential</atitle><jtitle>Journal of mathematical physics</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>65</volume><issue>7</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We study non-smoothness of the fundamental solution for the Schrödinger equation with a spherically symmetric and super-quadratic potential in the sense that V(x) ≥ C|x|2+ɛ at infinity with constants C &gt; 0 and ɛ &gt; 0. More precisely, we show the fundamental solution E(t, x, y) does not belong to C1 as a function of (t, x, y), which partially solves Yajima’s conjecture.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0184443</doi><tpages>17</tpages><orcidid>https://orcid.org/0009-0005-7641-188X</orcidid><orcidid>https://orcid.org/0000-0003-1520-1246</orcidid><orcidid>https://orcid.org/0000-0002-8101-5241</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2024-07, Vol.65 (7)
issn 0022-2488
1089-7658
language eng
recordid cdi_proquest_journals_3082690925
source AIP Journals Complete
subjects Schrodinger equation
Smoothness
title Non-smoothness of the fundamental solutions for Schrödinger equations with super-quadratic and spherically symmetric potential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T22%3A24%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-smoothness%20of%20the%20fundamental%20solutions%20for%20Schr%C3%B6dinger%20equations%20with%20super-quadratic%20and%20spherically%20symmetric%20potential&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Kato,%20Keiichi&rft.date=2024-07-01&rft.volume=65&rft.issue=7&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0184443&rft_dat=%3Cproquest_cross%3E3082690925%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3082690925&rft_id=info:pmid/&rfr_iscdi=true