Non-smoothness of the fundamental solutions for Schrödinger equations with super-quadratic and spherically symmetric potential

We study non-smoothness of the fundamental solution for the Schrödinger equation with a spherically symmetric and super-quadratic potential in the sense that V(x) ≥ C|x|2+ɛ at infinity with constants C > 0 and ɛ > 0. More precisely, we show the fundamental solution E(t, x, y) does not belong t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2024-07, Vol.65 (7)
Hauptverfasser: Kato, Keiichi, Nakahashi, Wataru, Tadano, Yukihide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study non-smoothness of the fundamental solution for the Schrödinger equation with a spherically symmetric and super-quadratic potential in the sense that V(x) ≥ C|x|2+ɛ at infinity with constants C > 0 and ɛ > 0. More precisely, we show the fundamental solution E(t, x, y) does not belong to C1 as a function of (t, x, y), which partially solves Yajima’s conjecture.
ISSN:0022-2488
1089-7658
DOI:10.1063/5.0184443