New SiS destruction and formation routes via neutral-neutral reactions and their fundamental role in interstellar clouds at low- and high-metallicity values
Context . Among the silicon-bearing species discovered in the interstellar medium, SiS and SiO stand out as key tracers due to their distinct chemistry and variable abundances in interstellar and circumstellar environments. Nevertheless, while the origins of SiO are well documented, the SiS chemistr...
Gespeichert in:
Veröffentlicht in: | Astronomy and astrophysics (Berlin) 2024-07, Vol.687, p.A149 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Context . Among the silicon-bearing species discovered in the interstellar medium, SiS and SiO stand out as key tracers due to their distinct chemistry and variable abundances in interstellar and circumstellar environments. Nevertheless, while the origins of SiO are well documented, the SiS chemistry remains relatively unexplored.
Aims . Our objective is to enhance the network of Si- and S-bearing chemical reactions for a gas-grain model in molecular clouds, encompassing both low and high metallicities. To achieve this, we calculated the energies and rate coefficients for six neutral atom-diatom reactions involved in the SiCS triatomic system, with a special focus on the C+SiS and S+SiC collisions.
Methods . We employed the coupled-cluster method with single and double substitutions and a perturbative treatment of triple substitutions (CCSD(T)) refined at the explicitly correlated CCSD(T)-F12 level. With these computational results in conjunction with supplementary data from the literature, we construct an extended network of neutral-neutral chemical reactions involving Si- and S-bearing molecules. To assess the impact of these chemical reactions, we performed time-dependent models employing the Nautilus gas-grain code, setting the gas temperature to 10 K and the H 2 density to 2 × 10 4 cm −3 . The models considered two initial abundance scenarios, corresponding to low- and high-metallicity levels. Abundances were computed using both the default chemical network and the constrained network, enriched with newly calculated reactions.
Results . The temperature dependence for the reactions involving SiS were modelled to the k ( T ) = α ( T /300) β exp (− γ/T ) expression, and the coefficients are provided for the first time. The high-metallicity models significantly boost the SiS production, resulting in abundances nearly four orders of magnitude higher compared to low-metallicity models. Higher initial abundances of C, S, and Si, roughly ~2, 190, and 210 times higher, respectively, contribute to this. Around the age of 10 3 yr, destruction mechanisms become relevant, impacting the abundance of SiS. The proposed production reaction S + SiC → C + SiS, mitigates these effects in later stages. By expanding the gas reaction network using a high-metallicity model, we derived estimates for the abundances of observed interstellar molecules, including SiO, SO, and SO 2 .
Conclusions . We demonstrate the significance of both SiC+S and C+SiS channels in the SiS chemistr |
---|---|
ISSN: | 0004-6361 1432-0746 |
DOI: | 10.1051/0004-6361/202348316 |