A Scalable Real-Time Data Assimilation Framework for Predicting Turbulent Atmosphere Dynamics

The weather and climate domains are undergoing a significant transformation thanks to advances in AI-based foundation models such as FourCastNet, GraphCast, ClimaX and Pangu-Weather. While these models show considerable potential, they are not ready yet for operational use in weather forecasting or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Yin, Junqi, Liang, Siming, Liu, Siyan, Bao, Feng, Chipilski, Hristo G, Lu, Dan, Zhang, Guannan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The weather and climate domains are undergoing a significant transformation thanks to advances in AI-based foundation models such as FourCastNet, GraphCast, ClimaX and Pangu-Weather. While these models show considerable potential, they are not ready yet for operational use in weather forecasting or climate prediction. This is due to the lack of a data assimilation method as part of their workflow to enable the assimilation of incoming Earth system observations in real time. This limitation affects their effectiveness in predicting complex atmospheric phenomena such as tropical cyclones and atmospheric rivers. To overcome these obstacles, we introduce a generic real-time data assimilation framework and demonstrate its end-to-end performance on the Frontier supercomputer. This framework comprises two primary modules: an ensemble score filter (EnSF), which significantly outperforms the state-of-the-art data assimilation method, namely, the Local Ensemble Transform Kalman Filter (LETKF); and a vision transformer-based surrogate capable of real-time adaptation through the integration of observational data. The ViT surrogate can represent either physics-based models or AI-based foundation models. We demonstrate both the strong and weak scaling of our framework up to 1024 GPUs on the Exascale supercomputer, Frontier. Our results not only illustrate the framework's exceptional scalability on high-performance computing systems, but also demonstrate the importance of supercomputers in real-time data assimilation for weather and climate predictions. Even though the proposed framework is tested only on a benchmark surface quasi-geostrophic (SQG) turbulence system, it has the potential to be combined with existing AI-based foundation models, making it suitable for future operational implementations.
ISSN:2331-8422