Toeplitz and Hankel Operators on Vector-Valued Fock-Type Spaces
In this paper, we study some characterizations of the Toeplitz and Hankel operators with positive operator-valued function as symbol on the vector-valued Fock-type spaces. We first discuss that the Bergman projection P : L Ψ p ( H ) → F Ψ p ( H ) is bounded for all 1 ≤ p ≤ ∞ , and obtain the duality...
Gespeichert in:
Veröffentlicht in: | Complex analysis and operator theory 2024-09, Vol.18 (6), Article 133 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study some characterizations of the Toeplitz and Hankel operators with positive operator-valued function as symbol on the vector-valued Fock-type spaces. We first discuss that the Bergman projection
P
:
L
Ψ
p
(
H
)
→
F
Ψ
p
(
H
)
is bounded for all
1
≤
p
≤
∞
, and obtain the duality of the vector-valued Fock-type spaces. Second, using operator-valued Carleson conditions, we give a complete characterization of the boundedness and compactness of the Toeplitz operators on
F
Ψ
p
(
H
)
(
1
<
p
<
∞
)
. Finally, we describe the boundedness (or compactness) of the Hankel operators
H
G
and
H
G
∗
on
F
Ψ
2
(
H
)
in terms of a bounded (or vanishing) mean oscillation. We also give geometrical descriptions for the operator-valued spaces
B
M
O
Ψ
2
and
V
M
O
Ψ
2
defined in terms of the Berezin transform. |
---|---|
ISSN: | 1661-8254 1661-8262 |
DOI: | 10.1007/s11785-024-01575-5 |