Fixed subgroups in Artin groups
We study fixed subgroups of automorphisms of any large-type Artin group \(A_{\Gamma}\). We define a natural subgroup \(\mathrm{Aut}_\Gamma(A_\Gamma)\) of \(\mathrm{Aut}(A_{\Gamma})\), and for every \(\gamma \in \mathrm{Aut}_\Gamma(A_\Gamma)\) we find the isomorphism type of \(\mathrm{Fix}(\gamma)\)...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study fixed subgroups of automorphisms of any large-type Artin group \(A_{\Gamma}\). We define a natural subgroup \(\mathrm{Aut}_\Gamma(A_\Gamma)\) of \(\mathrm{Aut}(A_{\Gamma})\), and for every \(\gamma \in \mathrm{Aut}_\Gamma(A_\Gamma)\) we find the isomorphism type of \(\mathrm{Fix}(\gamma)\) and a generating set for a finite index subgroup. We show that \(\mathrm{Fix}(\gamma)\) is a finitely generated Artin group, with a uniform bound on the rank in terms of the number of vertices of \(\Gamma\). Finally, we provide a natural geometric characterisation of the subgroup \(\mathrm{Aut}_\Gamma(A_\Gamma)\), which informally is the maximal subgroup of \(\mathrm{Aut}(A_\Gamma)\) leaving the Deligne complex of \(A_{\Gamma}\) invariant. |
---|---|
ISSN: | 2331-8422 |