Real toric manifolds associated with chordal nestohedra

This paper investigates the rational Betti numbers of real toric manifolds associated with chordal nestohedra. We consider the poset topology of a specific poset induced from a chordal building set, and show its EL-shellability. Based on this, we present an explicit description using alternating \(\...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Choi, Suyoung, Yoon, Younghan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates the rational Betti numbers of real toric manifolds associated with chordal nestohedra. We consider the poset topology of a specific poset induced from a chordal building set, and show its EL-shellability. Based on this, we present an explicit description using alternating \(\mathcal{B}\)-permutations for a chordal building set \(\mathcal{B}\), transforming the computing Betti numbers into a counting problem. This approach allows us to compute the \(a\)-number of a finite simple graph through permutation counting when the graph is chordal. In addition, we provide detailed computations for specific cases such as real Hochschild varieties corresponding to Hochschild polytopes.
ISSN:2331-8422