A NEW GENERALIZATION OF (m, n)-CLOSED IDEALS

Let R be a commutative ring with identity. For positive integers m and n , Anderson and Badawi ( Journal of Algebra and Its Applications 16(1):1750013 (21 pp), 2017) defined an ideal I of a ring R to be an ( m , n )-closed if whenever x m ∈ I , then x n ∈ I . In this paper we define and study a new...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2024, Vol.280 (3), p.288-299
Hauptverfasser: Khashan, Hani A., Celikel, Ece Yetkin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let R be a commutative ring with identity. For positive integers m and n , Anderson and Badawi ( Journal of Algebra and Its Applications 16(1):1750013 (21 pp), 2017) defined an ideal I of a ring R to be an ( m , n )-closed if whenever x m ∈ I , then x n ∈ I . In this paper we define and study a new generalization of the class of ( m , n )-closed ideals which is the class of quasi ( m , n )-closed ideals. A proper ideal I is called quasi ( m , n )-closed in R if for x ∈ R , x m ∈ I implies either x n ∈ I or x m - n ∈ I . That is, I is quasi ( m , n )-closed in R if and only if I is either ( m ,  n )-closed or ( m , m - n )-closed in R . We justify several properties and characterizations of quasi ( m , n )-closed ideals with many supporting examples. Furthermore, we investigate quasi ( m , n )-closed ideals under various contexts of constructions such as direct products, localizations and homomorphic images. Finally, we discuss the behavior of this class of ideals in idealization rings.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-023-06814-2