Enhancing bone tissue regeneration: a review synergistic hydrogel approach for comprehensive bone repair

A comprehensive approach to utilization of optimal materials derived from hydroxyapatite and chitosan for mending bone fractures has been studied. These materials consist of granules and hydrogel components encompassing essential constituents such as Ca 2+ (calcium), PO 4 3− (phosphate), OH − (hydro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer bulletin (Berlin, Germany) Germany), 2024-08, Vol.81 (12), p.10561-10587
Hauptverfasser: Kolly, Febrianti Mahrani, Rauf, Nurlaela, Tahir, Dahlang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10587
container_issue 12
container_start_page 10561
container_title Polymer bulletin (Berlin, Germany)
container_volume 81
creator Kolly, Febrianti Mahrani
Rauf, Nurlaela
Tahir, Dahlang
description A comprehensive approach to utilization of optimal materials derived from hydroxyapatite and chitosan for mending bone fractures has been studied. These materials consist of granules and hydrogel components encompassing essential constituents such as Ca 2+ (calcium), PO 4 3− (phosphate), OH − (hydroxyl), and NH 2 (amino), which play a pivotal role in absorbing material ions within fractured bones, facilitating osteoconduction. The study demonstrates the efficacy of the freeze-drying method as a versatile technique for creating hydrogels for bone repair. This method encompasses three primary phases: freezing (ensuring sample solidification), primary drying (sublimating frozen water), and secondary drying (eliminating unfrozen water). Concurrently, the article highlights the process of osteoinduction, involving the stimulation of new bone tissue growth facilitated by osteoblasts. These osteoblasts contribute to bone metabolism by synthesizing diverse bone matrix proteins, regulating matrix mineralization, and overseeing osteoclastic activities, angiogenesis, thereby fostering enhanced bone formation within soft tissue. Additionally, this process activates expedited bone growth in stem cells and blood within bone structures.
doi_str_mv 10.1007/s00289-024-05236-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3081478246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081478246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-8418db9c01a057e1562e064323fc5feb52faa4630475cdff4d1f70a12116d4893</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssQ6MHSdO2KGqPKRKbGBtuc44cdU6wU6L-vcYgsSO1Tx0753RIeSawS0DkHcRgFd1BlxkUPC8zOQJmTGRGi5EfUpmwCRkUOX1ObmIcQNpLks2I93Sd9ob51u67j3S0cW4RxqwRY9Bj67391Sn-eDwk8ZjWrYujs7Q7tiEvsUt1cMQem06avtATb8bAnboozvgFBlw0C5ckjOrtxGvfuucvD8u3xbP2er16WXxsMoMlzBmlWBVs64NMA2FRFaUHKEUOc-tKSyuC261FmUOQhamsVY0zErQjDNWNqKq8zm5mXLTUx97jKPa9Pvg00mVQ8WErHiyzwmfVCb0MQa0aghup8NRMVDfRNVEVCWi6oeoksmUT6aYxL7F8Bf9j-sL6UN6Xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081478246</pqid></control><display><type>article</type><title>Enhancing bone tissue regeneration: a review synergistic hydrogel approach for comprehensive bone repair</title><source>SpringerNature Journals</source><creator>Kolly, Febrianti Mahrani ; Rauf, Nurlaela ; Tahir, Dahlang</creator><creatorcontrib>Kolly, Febrianti Mahrani ; Rauf, Nurlaela ; Tahir, Dahlang</creatorcontrib><description>A comprehensive approach to utilization of optimal materials derived from hydroxyapatite and chitosan for mending bone fractures has been studied. These materials consist of granules and hydrogel components encompassing essential constituents such as Ca 2+ (calcium), PO 4 3− (phosphate), OH − (hydroxyl), and NH 2 (amino), which play a pivotal role in absorbing material ions within fractured bones, facilitating osteoconduction. The study demonstrates the efficacy of the freeze-drying method as a versatile technique for creating hydrogels for bone repair. This method encompasses three primary phases: freezing (ensuring sample solidification), primary drying (sublimating frozen water), and secondary drying (eliminating unfrozen water). Concurrently, the article highlights the process of osteoinduction, involving the stimulation of new bone tissue growth facilitated by osteoblasts. These osteoblasts contribute to bone metabolism by synthesizing diverse bone matrix proteins, regulating matrix mineralization, and overseeing osteoclastic activities, angiogenesis, thereby fostering enhanced bone formation within soft tissue. Additionally, this process activates expedited bone growth in stem cells and blood within bone structures.</description><identifier>ISSN: 0170-0839</identifier><identifier>EISSN: 1436-2449</identifier><identifier>DOI: 10.1007/s00289-024-05236-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biomedical materials ; Bones ; Calcium ions ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Chitosan ; Complex Fluids and Microfluidics ; Cooling ; Drying ; Fractures ; Freezing ; Hydrogels ; Hydroxyapatite ; Metabolism ; Organic Chemistry ; Osteoblasts ; Physical Chemistry ; Polymer Sciences ; Regeneration (physiology) ; Review Paper ; Soft and Granular Matter ; Soft tissues ; Solidification ; Stem cells ; Temperature ; Tissue engineering</subject><ispartof>Polymer bulletin (Berlin, Germany), 2024-08, Vol.81 (12), p.10561-10587</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-8418db9c01a057e1562e064323fc5feb52faa4630475cdff4d1f70a12116d4893</cites><orcidid>0000-0002-8241-3604</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00289-024-05236-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00289-024-05236-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kolly, Febrianti Mahrani</creatorcontrib><creatorcontrib>Rauf, Nurlaela</creatorcontrib><creatorcontrib>Tahir, Dahlang</creatorcontrib><title>Enhancing bone tissue regeneration: a review synergistic hydrogel approach for comprehensive bone repair</title><title>Polymer bulletin (Berlin, Germany)</title><addtitle>Polym. Bull</addtitle><description>A comprehensive approach to utilization of optimal materials derived from hydroxyapatite and chitosan for mending bone fractures has been studied. These materials consist of granules and hydrogel components encompassing essential constituents such as Ca 2+ (calcium), PO 4 3− (phosphate), OH − (hydroxyl), and NH 2 (amino), which play a pivotal role in absorbing material ions within fractured bones, facilitating osteoconduction. The study demonstrates the efficacy of the freeze-drying method as a versatile technique for creating hydrogels for bone repair. This method encompasses three primary phases: freezing (ensuring sample solidification), primary drying (sublimating frozen water), and secondary drying (eliminating unfrozen water). Concurrently, the article highlights the process of osteoinduction, involving the stimulation of new bone tissue growth facilitated by osteoblasts. These osteoblasts contribute to bone metabolism by synthesizing diverse bone matrix proteins, regulating matrix mineralization, and overseeing osteoclastic activities, angiogenesis, thereby fostering enhanced bone formation within soft tissue. Additionally, this process activates expedited bone growth in stem cells and blood within bone structures.</description><subject>Biomedical materials</subject><subject>Bones</subject><subject>Calcium ions</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chitosan</subject><subject>Complex Fluids and Microfluidics</subject><subject>Cooling</subject><subject>Drying</subject><subject>Fractures</subject><subject>Freezing</subject><subject>Hydrogels</subject><subject>Hydroxyapatite</subject><subject>Metabolism</subject><subject>Organic Chemistry</subject><subject>Osteoblasts</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Regeneration (physiology)</subject><subject>Review Paper</subject><subject>Soft and Granular Matter</subject><subject>Soft tissues</subject><subject>Solidification</subject><subject>Stem cells</subject><subject>Temperature</subject><subject>Tissue engineering</subject><issn>0170-0839</issn><issn>1436-2449</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssQ6MHSdO2KGqPKRKbGBtuc44cdU6wU6L-vcYgsSO1Tx0753RIeSawS0DkHcRgFd1BlxkUPC8zOQJmTGRGi5EfUpmwCRkUOX1ObmIcQNpLks2I93Sd9ob51u67j3S0cW4RxqwRY9Bj67391Sn-eDwk8ZjWrYujs7Q7tiEvsUt1cMQem06avtATb8bAnboozvgFBlw0C5ckjOrtxGvfuucvD8u3xbP2er16WXxsMoMlzBmlWBVs64NMA2FRFaUHKEUOc-tKSyuC261FmUOQhamsVY0zErQjDNWNqKq8zm5mXLTUx97jKPa9Pvg00mVQ8WErHiyzwmfVCb0MQa0aghup8NRMVDfRNVEVCWi6oeoksmUT6aYxL7F8Bf9j-sL6UN6Xg</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Kolly, Febrianti Mahrani</creator><creator>Rauf, Nurlaela</creator><creator>Tahir, Dahlang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8241-3604</orcidid></search><sort><creationdate>20240801</creationdate><title>Enhancing bone tissue regeneration: a review synergistic hydrogel approach for comprehensive bone repair</title><author>Kolly, Febrianti Mahrani ; Rauf, Nurlaela ; Tahir, Dahlang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-8418db9c01a057e1562e064323fc5feb52faa4630475cdff4d1f70a12116d4893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomedical materials</topic><topic>Bones</topic><topic>Calcium ions</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chitosan</topic><topic>Complex Fluids and Microfluidics</topic><topic>Cooling</topic><topic>Drying</topic><topic>Fractures</topic><topic>Freezing</topic><topic>Hydrogels</topic><topic>Hydroxyapatite</topic><topic>Metabolism</topic><topic>Organic Chemistry</topic><topic>Osteoblasts</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Regeneration (physiology)</topic><topic>Review Paper</topic><topic>Soft and Granular Matter</topic><topic>Soft tissues</topic><topic>Solidification</topic><topic>Stem cells</topic><topic>Temperature</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolly, Febrianti Mahrani</creatorcontrib><creatorcontrib>Rauf, Nurlaela</creatorcontrib><creatorcontrib>Tahir, Dahlang</creatorcontrib><collection>CrossRef</collection><jtitle>Polymer bulletin (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolly, Febrianti Mahrani</au><au>Rauf, Nurlaela</au><au>Tahir, Dahlang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing bone tissue regeneration: a review synergistic hydrogel approach for comprehensive bone repair</atitle><jtitle>Polymer bulletin (Berlin, Germany)</jtitle><stitle>Polym. Bull</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>81</volume><issue>12</issue><spage>10561</spage><epage>10587</epage><pages>10561-10587</pages><issn>0170-0839</issn><eissn>1436-2449</eissn><abstract>A comprehensive approach to utilization of optimal materials derived from hydroxyapatite and chitosan for mending bone fractures has been studied. These materials consist of granules and hydrogel components encompassing essential constituents such as Ca 2+ (calcium), PO 4 3− (phosphate), OH − (hydroxyl), and NH 2 (amino), which play a pivotal role in absorbing material ions within fractured bones, facilitating osteoconduction. The study demonstrates the efficacy of the freeze-drying method as a versatile technique for creating hydrogels for bone repair. This method encompasses three primary phases: freezing (ensuring sample solidification), primary drying (sublimating frozen water), and secondary drying (eliminating unfrozen water). Concurrently, the article highlights the process of osteoinduction, involving the stimulation of new bone tissue growth facilitated by osteoblasts. These osteoblasts contribute to bone metabolism by synthesizing diverse bone matrix proteins, regulating matrix mineralization, and overseeing osteoclastic activities, angiogenesis, thereby fostering enhanced bone formation within soft tissue. Additionally, this process activates expedited bone growth in stem cells and blood within bone structures.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00289-024-05236-7</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-8241-3604</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-0839
ispartof Polymer bulletin (Berlin, Germany), 2024-08, Vol.81 (12), p.10561-10587
issn 0170-0839
1436-2449
language eng
recordid cdi_proquest_journals_3081478246
source SpringerNature Journals
subjects Biomedical materials
Bones
Calcium ions
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Chitosan
Complex Fluids and Microfluidics
Cooling
Drying
Fractures
Freezing
Hydrogels
Hydroxyapatite
Metabolism
Organic Chemistry
Osteoblasts
Physical Chemistry
Polymer Sciences
Regeneration (physiology)
Review Paper
Soft and Granular Matter
Soft tissues
Solidification
Stem cells
Temperature
Tissue engineering
title Enhancing bone tissue regeneration: a review synergistic hydrogel approach for comprehensive bone repair
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A22%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20bone%20tissue%20regeneration:%20a%20review%20synergistic%20hydrogel%20approach%20for%20comprehensive%20bone%20repair&rft.jtitle=Polymer%20bulletin%20(Berlin,%20Germany)&rft.au=Kolly,%20Febrianti%20Mahrani&rft.date=2024-08-01&rft.volume=81&rft.issue=12&rft.spage=10561&rft.epage=10587&rft.pages=10561-10587&rft.issn=0170-0839&rft.eissn=1436-2449&rft_id=info:doi/10.1007/s00289-024-05236-7&rft_dat=%3Cproquest_cross%3E3081478246%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081478246&rft_id=info:pmid/&rfr_iscdi=true