Enhancing bone tissue regeneration: a review synergistic hydrogel approach for comprehensive bone repair
A comprehensive approach to utilization of optimal materials derived from hydroxyapatite and chitosan for mending bone fractures has been studied. These materials consist of granules and hydrogel components encompassing essential constituents such as Ca 2+ (calcium), PO 4 3− (phosphate), OH − (hydro...
Gespeichert in:
Veröffentlicht in: | Polymer bulletin (Berlin, Germany) Germany), 2024-08, Vol.81 (12), p.10561-10587 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10587 |
---|---|
container_issue | 12 |
container_start_page | 10561 |
container_title | Polymer bulletin (Berlin, Germany) |
container_volume | 81 |
creator | Kolly, Febrianti Mahrani Rauf, Nurlaela Tahir, Dahlang |
description | A comprehensive approach to utilization of optimal materials derived from hydroxyapatite and chitosan for mending bone fractures has been studied. These materials consist of granules and hydrogel components encompassing essential constituents such as Ca
2+
(calcium), PO
4
3−
(phosphate), OH
−
(hydroxyl), and NH
2
(amino), which play a pivotal role in absorbing material ions within fractured bones, facilitating osteoconduction. The study demonstrates the efficacy of the freeze-drying method as a versatile technique for creating hydrogels for bone repair. This method encompasses three primary phases: freezing (ensuring sample solidification), primary drying (sublimating frozen water), and secondary drying (eliminating unfrozen water). Concurrently, the article highlights the process of osteoinduction, involving the stimulation of new bone tissue growth facilitated by osteoblasts. These osteoblasts contribute to bone metabolism by synthesizing diverse bone matrix proteins, regulating matrix mineralization, and overseeing osteoclastic activities, angiogenesis, thereby fostering enhanced bone formation within soft tissue. Additionally, this process activates expedited bone growth in stem cells and blood within bone structures. |
doi_str_mv | 10.1007/s00289-024-05236-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3081478246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081478246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-8418db9c01a057e1562e064323fc5feb52faa4630475cdff4d1f70a12116d4893</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssQ6MHSdO2KGqPKRKbGBtuc44cdU6wU6L-vcYgsSO1Tx0753RIeSawS0DkHcRgFd1BlxkUPC8zOQJmTGRGi5EfUpmwCRkUOX1ObmIcQNpLks2I93Sd9ob51u67j3S0cW4RxqwRY9Bj67391Sn-eDwk8ZjWrYujs7Q7tiEvsUt1cMQem06avtATb8bAnboozvgFBlw0C5ckjOrtxGvfuucvD8u3xbP2er16WXxsMoMlzBmlWBVs64NMA2FRFaUHKEUOc-tKSyuC261FmUOQhamsVY0zErQjDNWNqKq8zm5mXLTUx97jKPa9Pvg00mVQ8WErHiyzwmfVCb0MQa0aghup8NRMVDfRNVEVCWi6oeoksmUT6aYxL7F8Bf9j-sL6UN6Xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081478246</pqid></control><display><type>article</type><title>Enhancing bone tissue regeneration: a review synergistic hydrogel approach for comprehensive bone repair</title><source>SpringerNature Journals</source><creator>Kolly, Febrianti Mahrani ; Rauf, Nurlaela ; Tahir, Dahlang</creator><creatorcontrib>Kolly, Febrianti Mahrani ; Rauf, Nurlaela ; Tahir, Dahlang</creatorcontrib><description>A comprehensive approach to utilization of optimal materials derived from hydroxyapatite and chitosan for mending bone fractures has been studied. These materials consist of granules and hydrogel components encompassing essential constituents such as Ca
2+
(calcium), PO
4
3−
(phosphate), OH
−
(hydroxyl), and NH
2
(amino), which play a pivotal role in absorbing material ions within fractured bones, facilitating osteoconduction. The study demonstrates the efficacy of the freeze-drying method as a versatile technique for creating hydrogels for bone repair. This method encompasses three primary phases: freezing (ensuring sample solidification), primary drying (sublimating frozen water), and secondary drying (eliminating unfrozen water). Concurrently, the article highlights the process of osteoinduction, involving the stimulation of new bone tissue growth facilitated by osteoblasts. These osteoblasts contribute to bone metabolism by synthesizing diverse bone matrix proteins, regulating matrix mineralization, and overseeing osteoclastic activities, angiogenesis, thereby fostering enhanced bone formation within soft tissue. Additionally, this process activates expedited bone growth in stem cells and blood within bone structures.</description><identifier>ISSN: 0170-0839</identifier><identifier>EISSN: 1436-2449</identifier><identifier>DOI: 10.1007/s00289-024-05236-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biomedical materials ; Bones ; Calcium ions ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Chitosan ; Complex Fluids and Microfluidics ; Cooling ; Drying ; Fractures ; Freezing ; Hydrogels ; Hydroxyapatite ; Metabolism ; Organic Chemistry ; Osteoblasts ; Physical Chemistry ; Polymer Sciences ; Regeneration (physiology) ; Review Paper ; Soft and Granular Matter ; Soft tissues ; Solidification ; Stem cells ; Temperature ; Tissue engineering</subject><ispartof>Polymer bulletin (Berlin, Germany), 2024-08, Vol.81 (12), p.10561-10587</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-8418db9c01a057e1562e064323fc5feb52faa4630475cdff4d1f70a12116d4893</cites><orcidid>0000-0002-8241-3604</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00289-024-05236-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00289-024-05236-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kolly, Febrianti Mahrani</creatorcontrib><creatorcontrib>Rauf, Nurlaela</creatorcontrib><creatorcontrib>Tahir, Dahlang</creatorcontrib><title>Enhancing bone tissue regeneration: a review synergistic hydrogel approach for comprehensive bone repair</title><title>Polymer bulletin (Berlin, Germany)</title><addtitle>Polym. Bull</addtitle><description>A comprehensive approach to utilization of optimal materials derived from hydroxyapatite and chitosan for mending bone fractures has been studied. These materials consist of granules and hydrogel components encompassing essential constituents such as Ca
2+
(calcium), PO
4
3−
(phosphate), OH
−
(hydroxyl), and NH
2
(amino), which play a pivotal role in absorbing material ions within fractured bones, facilitating osteoconduction. The study demonstrates the efficacy of the freeze-drying method as a versatile technique for creating hydrogels for bone repair. This method encompasses three primary phases: freezing (ensuring sample solidification), primary drying (sublimating frozen water), and secondary drying (eliminating unfrozen water). Concurrently, the article highlights the process of osteoinduction, involving the stimulation of new bone tissue growth facilitated by osteoblasts. These osteoblasts contribute to bone metabolism by synthesizing diverse bone matrix proteins, regulating matrix mineralization, and overseeing osteoclastic activities, angiogenesis, thereby fostering enhanced bone formation within soft tissue. Additionally, this process activates expedited bone growth in stem cells and blood within bone structures.</description><subject>Biomedical materials</subject><subject>Bones</subject><subject>Calcium ions</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chitosan</subject><subject>Complex Fluids and Microfluidics</subject><subject>Cooling</subject><subject>Drying</subject><subject>Fractures</subject><subject>Freezing</subject><subject>Hydrogels</subject><subject>Hydroxyapatite</subject><subject>Metabolism</subject><subject>Organic Chemistry</subject><subject>Osteoblasts</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Regeneration (physiology)</subject><subject>Review Paper</subject><subject>Soft and Granular Matter</subject><subject>Soft tissues</subject><subject>Solidification</subject><subject>Stem cells</subject><subject>Temperature</subject><subject>Tissue engineering</subject><issn>0170-0839</issn><issn>1436-2449</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssQ6MHSdO2KGqPKRKbGBtuc44cdU6wU6L-vcYgsSO1Tx0753RIeSawS0DkHcRgFd1BlxkUPC8zOQJmTGRGi5EfUpmwCRkUOX1ObmIcQNpLks2I93Sd9ob51u67j3S0cW4RxqwRY9Bj67391Sn-eDwk8ZjWrYujs7Q7tiEvsUt1cMQem06avtATb8bAnboozvgFBlw0C5ckjOrtxGvfuucvD8u3xbP2er16WXxsMoMlzBmlWBVs64NMA2FRFaUHKEUOc-tKSyuC261FmUOQhamsVY0zErQjDNWNqKq8zm5mXLTUx97jKPa9Pvg00mVQ8WErHiyzwmfVCb0MQa0aghup8NRMVDfRNVEVCWi6oeoksmUT6aYxL7F8Bf9j-sL6UN6Xg</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Kolly, Febrianti Mahrani</creator><creator>Rauf, Nurlaela</creator><creator>Tahir, Dahlang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8241-3604</orcidid></search><sort><creationdate>20240801</creationdate><title>Enhancing bone tissue regeneration: a review synergistic hydrogel approach for comprehensive bone repair</title><author>Kolly, Febrianti Mahrani ; Rauf, Nurlaela ; Tahir, Dahlang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-8418db9c01a057e1562e064323fc5feb52faa4630475cdff4d1f70a12116d4893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomedical materials</topic><topic>Bones</topic><topic>Calcium ions</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chitosan</topic><topic>Complex Fluids and Microfluidics</topic><topic>Cooling</topic><topic>Drying</topic><topic>Fractures</topic><topic>Freezing</topic><topic>Hydrogels</topic><topic>Hydroxyapatite</topic><topic>Metabolism</topic><topic>Organic Chemistry</topic><topic>Osteoblasts</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Regeneration (physiology)</topic><topic>Review Paper</topic><topic>Soft and Granular Matter</topic><topic>Soft tissues</topic><topic>Solidification</topic><topic>Stem cells</topic><topic>Temperature</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolly, Febrianti Mahrani</creatorcontrib><creatorcontrib>Rauf, Nurlaela</creatorcontrib><creatorcontrib>Tahir, Dahlang</creatorcontrib><collection>CrossRef</collection><jtitle>Polymer bulletin (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolly, Febrianti Mahrani</au><au>Rauf, Nurlaela</au><au>Tahir, Dahlang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing bone tissue regeneration: a review synergistic hydrogel approach for comprehensive bone repair</atitle><jtitle>Polymer bulletin (Berlin, Germany)</jtitle><stitle>Polym. Bull</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>81</volume><issue>12</issue><spage>10561</spage><epage>10587</epage><pages>10561-10587</pages><issn>0170-0839</issn><eissn>1436-2449</eissn><abstract>A comprehensive approach to utilization of optimal materials derived from hydroxyapatite and chitosan for mending bone fractures has been studied. These materials consist of granules and hydrogel components encompassing essential constituents such as Ca
2+
(calcium), PO
4
3−
(phosphate), OH
−
(hydroxyl), and NH
2
(amino), which play a pivotal role in absorbing material ions within fractured bones, facilitating osteoconduction. The study demonstrates the efficacy of the freeze-drying method as a versatile technique for creating hydrogels for bone repair. This method encompasses three primary phases: freezing (ensuring sample solidification), primary drying (sublimating frozen water), and secondary drying (eliminating unfrozen water). Concurrently, the article highlights the process of osteoinduction, involving the stimulation of new bone tissue growth facilitated by osteoblasts. These osteoblasts contribute to bone metabolism by synthesizing diverse bone matrix proteins, regulating matrix mineralization, and overseeing osteoclastic activities, angiogenesis, thereby fostering enhanced bone formation within soft tissue. Additionally, this process activates expedited bone growth in stem cells and blood within bone structures.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00289-024-05236-7</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-8241-3604</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-0839 |
ispartof | Polymer bulletin (Berlin, Germany), 2024-08, Vol.81 (12), p.10561-10587 |
issn | 0170-0839 1436-2449 |
language | eng |
recordid | cdi_proquest_journals_3081478246 |
source | SpringerNature Journals |
subjects | Biomedical materials Bones Calcium ions Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Chitosan Complex Fluids and Microfluidics Cooling Drying Fractures Freezing Hydrogels Hydroxyapatite Metabolism Organic Chemistry Osteoblasts Physical Chemistry Polymer Sciences Regeneration (physiology) Review Paper Soft and Granular Matter Soft tissues Solidification Stem cells Temperature Tissue engineering |
title | Enhancing bone tissue regeneration: a review synergistic hydrogel approach for comprehensive bone repair |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A22%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20bone%20tissue%20regeneration:%20a%20review%20synergistic%20hydrogel%20approach%20for%20comprehensive%20bone%20repair&rft.jtitle=Polymer%20bulletin%20(Berlin,%20Germany)&rft.au=Kolly,%20Febrianti%20Mahrani&rft.date=2024-08-01&rft.volume=81&rft.issue=12&rft.spage=10561&rft.epage=10587&rft.pages=10561-10587&rft.issn=0170-0839&rft.eissn=1436-2449&rft_id=info:doi/10.1007/s00289-024-05236-7&rft_dat=%3Cproquest_cross%3E3081478246%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081478246&rft_id=info:pmid/&rfr_iscdi=true |