SLIP: Securing LLMs IP Using Weights Decomposition

Large language models (LLMs) have recently seen widespread adoption, in both academia and industry. As these models grow, they become valuable intellectual property (IP), reflecting enormous investments by their owners. Moreover, the high cost of cloud-based deployment has driven interest towards de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Yehonathan Refael, Hakim, Adam, Greenberg, Lev, Aviv, Tal, Lokam, Satya, Fishman, Ben, Seidman, Shachar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Large language models (LLMs) have recently seen widespread adoption, in both academia and industry. As these models grow, they become valuable intellectual property (IP), reflecting enormous investments by their owners. Moreover, the high cost of cloud-based deployment has driven interest towards deployment to edge devices, yet this risks exposing valuable parameters to theft and unauthorized use. Current methods to protect models' IP on the edge have limitations in terms of practicality, loss in accuracy, or suitability to requirements. In this paper, we introduce a novel hybrid inference algorithm, named SLIP, designed to protect edge-deployed models from theft. SLIP is the first hybrid protocol that is both practical for real-world applications and provably secure, while having zero accuracy degradation and minimal impact on latency. It involves partitioning the model between two computing resources, one secure but expensive, and another cost-effective but vulnerable. This is achieved through matrix decomposition, ensuring that the secure resource retains a maximally sensitive portion of the model's IP while performing a minimal amount of computations, and vice versa for the vulnerable resource. Importantly, the protocol includes security guarantees that prevent attackers from exploiting the partition to infer the secured information. Finally, we present experimental results that show the robustness and effectiveness of our method, positioning it as a compelling solution for protecting LLMs.
ISSN:2331-8422