Some preconditioning techniques for a class of double saddle point problems
Summary In this paper, we describe and analyze the spectral properties of several exact block preconditioners for a class of double saddle point problems. Among all these, we consider an inexact version of a block triangular preconditioner providing extremely fast convergence of the (F)GMRES method....
Gespeichert in:
Veröffentlicht in: | Numerical linear algebra with applications 2024-08, Vol.31 (4), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Summary
In this paper, we describe and analyze the spectral properties of several exact block preconditioners for a class of double saddle point problems. Among all these, we consider an inexact version of a block triangular preconditioner providing extremely fast convergence of the (F)GMRES method. We develop a spectral analysis of the preconditioned matrix showing that the complex eigenvalues lie in a circle of center (1,0)$$ \left(1,0\right) $$ and radius 1, while the real eigenvalues are described in terms of the roots of a third order polynomial with real coefficients. Numerical examples are reported to illustrate the efficiency of inexact versions of the proposed preconditioners, and to verify the theoretical bounds. |
---|---|
ISSN: | 1070-5325 1099-1506 |
DOI: | 10.1002/nla.2551 |