Some preconditioning techniques for a class of double saddle point problems

Summary In this paper, we describe and analyze the spectral properties of several exact block preconditioners for a class of double saddle point problems. Among all these, we consider an inexact version of a block triangular preconditioner providing extremely fast convergence of the (F)GMRES method....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical linear algebra with applications 2024-08, Vol.31 (4), p.n/a
Hauptverfasser: Balani Bakrani, Fariba, Bergamaschi, Luca, Martínez, Ángeles, Hajarian, Masoud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary In this paper, we describe and analyze the spectral properties of several exact block preconditioners for a class of double saddle point problems. Among all these, we consider an inexact version of a block triangular preconditioner providing extremely fast convergence of the (F)GMRES method. We develop a spectral analysis of the preconditioned matrix showing that the complex eigenvalues lie in a circle of center (1,0)$$ \left(1,0\right) $$ and radius 1, while the real eigenvalues are described in terms of the roots of a third order polynomial with real coefficients. Numerical examples are reported to illustrate the efficiency of inexact versions of the proposed preconditioners, and to verify the theoretical bounds.
ISSN:1070-5325
1099-1506
DOI:10.1002/nla.2551